visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-13 14:30 
일시 May. 13 (Fri.), 02:30 PM 
장소 Zoom webinar 
연사 Dr. Kun-Rok Jeon(Department of Physics, Chung-Ang University) 

SRC Seminar

 

 

Topological Superconducting Spintronics Towards Zero-Power Computing Technologies

 

Dr. Kun-Rok Jeon

Department of Physics, Chung-Ang University

 

May. 13 (Fri.), 02:30 PM

https://kaist.zoom.us/j/88323922428
회의 ID: 883 2392 2428

암호: 839974

Abstract:

Semiconductor (SC) spintronics [1-4] aims to integrate memory and logic functions into a single device. Ferromagnetic tunnel contacts have emerged as a robust and technically viable method to inject spin current into a SC up to room temperature, and to detect it [3-7]. Intriguingly, it has been established that the spin current in ferromagnetic tunnel contacts can be created by thermal means (driven by a heat flow), namely Seebeck spin tunneling [8]. So far, the creation of thermal spin current relies on the spin-dependent energy dispersion of electronic states around the Fermi energy (EF), which determines thermoelectric properties. In the first part of my talk, I will describe a conceptually new approach to tailor the thermal spin current in ferromagnetic tunnel contacts to SCs exploiting spin-dependent thermoelectric properties away from EF through the application of a bias voltage across the tunnel contact [9,10].

Combining superconductivity with spintronics brings in a variety of notable phenomena which do not exist in the normal state, for instance quantum coherence, superconducting exchange coupling and spin-polarized triplet supercurrents [11,12]. This nascent field of superconducting spintronics promises to realize zero-energy-dissipation spin transfer and magnetization switching. Recent equilibrium (zero-bias) studies of the Josephson effect in S/FM/S (FM: ferromagnet; S: Superconductor) junctions and the critical temperature Tc modulation in FM/S/FM and S/FM/FM' superconducting spin valves have demonstrated that engineered magnetically-inhomogeneous S/FM interfaces can generate long-range triplet pairing states which explicitly carry spin [11,12]. However, direct measurement of triplet spin transport through a singlet S has not so far been achieved. In the second part, I will describe an essentially different approach, namely, a time-dependent ferromagnetic magnetization [ferromagnetic resonance (FMR)] can drive spin-polarized transport in a singlet S via spin-triplet states induced by spin-orbit coupling [13,14].

If time permits, I will briefly outline outstanding technical issues for the realization of energy-efficient (or even dissipation-less) spintronic technologies and present my research direction of how to address these issues via topology physics [15,16].

Reference: [1] Rev. Mod. Phys. 80, 1517 (2008), [2] Rev. Mod. Phys. 76, 323 (2004), [3] Nat. Mater. 11, 400 (2012), [4] Semicond. Sci. Technol. 27, 083001 (2012), [5] Nature 462, 491 (2009), [6] Appl. Phys. Express 4, 023003 (2011), [7] Phys. Rev. Appl. 2, 034005 (2014), [8] Nature 475, 82 (2011), [9] Nat. Mater. 13, 360 (2014), [10] Phys. Rev. B 91, 155305 (2015), [11] Nat. Phys. 11, 307 (2015), [12] Rep. Prog. Phys. 78, 104501 (2015), [13] Nat. Mater. 17, 499 (2018), [14] Phys. Rev. X 10, 031020 (2020), [15] Nat. Mater. 20, 1358 (2021), [16] Under review in Nat. Nanotech. (2022).

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
184 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
183 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
182 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
181 2022-12-20 16:00  E6-2. #2501  Getting into Biology and Medicine as Physicist
180 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
179 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
178 2015-09-07 15:00  E6-2. 1st fl. #1318  Advanced Optical Materials and Devices at NRL
177 2016-04-05 16:00  E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
176 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
175 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx
174 2022-06-10 16:00  E6-2. 1st fl. #1323  Fe5GeTe2의 나선형 자성특성과 자기저항의 전류밀도 의존성 연구 file
173 2022-06-10 14:30  E6-2. 1st fl. #1323  Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
172 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
171 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
170 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
169 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
168 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
167 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
166 2018-05-11 14:30  E6-2. 1st fl. #1323  Disordered Floquet topological insulators file
165 2018-04-09 11:00  E6-2. 1st fl. #1323  Doublon-holon origin of the subpeaks at the Hubbard band edges file