visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
일시 June 14 (THU), 10:00 AM 
장소 E6-2, 2nd fl. #2502 
연사 Prof. Kenji Toyoda 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 장소 제목
277 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
276 2023-06-01 16:00  E6-2 #1323  (광학분야 세미나)Quantum sensing using a squeezed light from hot Rb vapor
275 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
274 2022-12-09 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) Single-shot measurements of strongly-correlated artificial molecular levels in semiconductor quantum dots file
273 2023-03-16 16:00  E6-2 #1323  2023 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
272 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations file
271 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
270 2020-10-23 14:00  E6-2 #1323  Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
269 2022-11-24 16:00  E6-2 #1323 & Zoom  Probing fundamental physics by mapping the mm and sub-mm sky
268 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
267 2023-07-14 11:00  E6-2 #1501  Interfaces engineering of thin film oxides
266 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
265 2022-08-08 14:00  E6-2 #2502  Classical Shadow Tomography for Analog Quantum Simulators
264 2020-11-12 16:00  E6-2 1323  2020 가을학기 광학분야 특별세미나
263 2022-01-17 14:00  E6-2 Room 2502  Five Lectures on Observational Probes of Dark Energy file
262 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
261 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
260 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
259 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
258 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy