visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-05-13 14:30 
일시 May. 13 (Fri.), 02:30 PM 
장소 Zoom webinar 
연사 Dr. Kun-Rok Jeon(Department of Physics, Chung-Ang University) 

SRC Seminar

 

 

Topological Superconducting Spintronics Towards Zero-Power Computing Technologies

 

Dr. Kun-Rok Jeon

Department of Physics, Chung-Ang University

 

May. 13 (Fri.), 02:30 PM

https://kaist.zoom.us/j/88323922428
회의 ID: 883 2392 2428

암호: 839974

Abstract:

Semiconductor (SC) spintronics [1-4] aims to integrate memory and logic functions into a single device. Ferromagnetic tunnel contacts have emerged as a robust and technically viable method to inject spin current into a SC up to room temperature, and to detect it [3-7]. Intriguingly, it has been established that the spin current in ferromagnetic tunnel contacts can be created by thermal means (driven by a heat flow), namely Seebeck spin tunneling [8]. So far, the creation of thermal spin current relies on the spin-dependent energy dispersion of electronic states around the Fermi energy (EF), which determines thermoelectric properties. In the first part of my talk, I will describe a conceptually new approach to tailor the thermal spin current in ferromagnetic tunnel contacts to SCs exploiting spin-dependent thermoelectric properties away from EF through the application of a bias voltage across the tunnel contact [9,10].

Combining superconductivity with spintronics brings in a variety of notable phenomena which do not exist in the normal state, for instance quantum coherence, superconducting exchange coupling and spin-polarized triplet supercurrents [11,12]. This nascent field of superconducting spintronics promises to realize zero-energy-dissipation spin transfer and magnetization switching. Recent equilibrium (zero-bias) studies of the Josephson effect in S/FM/S (FM: ferromagnet; S: Superconductor) junctions and the critical temperature Tc modulation in FM/S/FM and S/FM/FM' superconducting spin valves have demonstrated that engineered magnetically-inhomogeneous S/FM interfaces can generate long-range triplet pairing states which explicitly carry spin [11,12]. However, direct measurement of triplet spin transport through a singlet S has not so far been achieved. In the second part, I will describe an essentially different approach, namely, a time-dependent ferromagnetic magnetization [ferromagnetic resonance (FMR)] can drive spin-polarized transport in a singlet S via spin-triplet states induced by spin-orbit coupling [13,14].

If time permits, I will briefly outline outstanding technical issues for the realization of energy-efficient (or even dissipation-less) spintronic technologies and present my research direction of how to address these issues via topology physics [15,16].

Reference: [1] Rev. Mod. Phys. 80, 1517 (2008), [2] Rev. Mod. Phys. 76, 323 (2004), [3] Nat. Mater. 11, 400 (2012), [4] Semicond. Sci. Technol. 27, 083001 (2012), [5] Nature 462, 491 (2009), [6] Appl. Phys. Express 4, 023003 (2011), [7] Phys. Rev. Appl. 2, 034005 (2014), [8] Nature 475, 82 (2011), [9] Nat. Mater. 13, 360 (2014), [10] Phys. Rev. B 91, 155305 (2015), [11] Nat. Phys. 11, 307 (2015), [12] Rep. Prog. Phys. 78, 104501 (2015), [13] Nat. Mater. 17, 499 (2018), [14] Phys. Rev. X 10, 031020 (2020), [15] Nat. Mater. 20, 1358 (2021), [16] Under review in Nat. Nanotech. (2022).

 

Contact: SunYoung Choi, (sun.0@kaist.ac.kr)

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
561 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file
560 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
559 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
558 2017-11-03 16:00  #1323 (1st fl., E6-2.)  Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions file
557 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
556 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
555 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
554 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
553 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
552 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
551 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
550 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
549 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
548 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
547 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
546 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
545 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
544 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
543 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
542 2017-11-28 16:00  #1323 (E6-2. 1st fl.)  Physics after the lab and the desk: Your work in PRL file