Quantum electron optics using flying electrons
2017.01.26 23:43
장소 | #1323(E6-2. 1st fl.) |
---|---|
일시 | Feb. 1 (Wed.), 2p.m. |
연사 | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo |
Quantum electron optics using flying electrons
Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo
Feb. 1 (Wed.), 2p.m. #1323(E6-2. 1st fl.)
Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.
In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.
Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.
This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.
[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..
[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).
[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).
[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).
[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).
[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).
[7] S. Hermelin et al., Nature 477, 435 (2011).
[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).
[9] H. Sanada et al., Nature Phys. 9, 280 (2013).
Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
127 | Apr. 28 (Fri.), 04:00 PM | #1323 (E6-2. 1st fl.) | Dr. Minkyung Jung Research Institute, DGIST | Carbon nanotubes coupled to superconducting impedance matching circuits |
126 | Apr. 28 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. JeongYoung Park Graduate School of EEWS, KAIST | Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion |
125 | April 6, 2017 (Thu), 4:00 pm | IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus | Prof. Youngjoon Kwon (Yonsei University) | For whom the Belle tolls |
124 | April 5th 2017, 12:00 ~ 13:00 | Room 101, Creative Learning Bldg.(E11) | Prof. Wonho Choe(Dept. of Physics),Prof. Young-chul GHIM(Dept. of Nuclear & Quantum Engineering) |
2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering
![]() |
123 | 2017/03/06 - 05/29 | Seminar Room 1501 | 이종봉 박사 (POSTECH) 외 |
Spring 2017: Physics Colloquium
![]() |
122 | 2017/03/21 - 06/08 | Seminar Room 1323 | 조길영 박사(KAIST) 외 |
Spring 2017: Physics Seminar Serises
![]() |
121 | Mar. 24 (Fri.), 4:00 PM | #1323 (1st fl. E6-2) | Dr. SangWook Lee | Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties |
120 | Mar. 24 (Fri.), 2:30 PM | #1323 (1st fl. E6-2). | Dr. MahnSoo Choi | Topological Dynamics |
119 | Mar. 2nd (Thu), 4:00 p.m | #1323(E6-2. 1st fl.) | Dr. Jonathan Denlinger, Lawrence Berkeley National Lab | “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems” |
» | Feb. 1 (Wed.), 2p.m. | #1323(E6-2. 1st fl.) | Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo | Quantum electron optics using flying electrons |
117 | 2017.1.9(Mon), 4PM | Lecture Hall, College of Natural Sciences [#1501,E6-2] | Prof. John Michael Kosterlitz, Brown University |
Topological Defects and Phase Transitions"
![]() |
116 | Dec. 12th (Mon) | 1:30p.m. #1323(E6-2. 1st fl.) | Dongjoon Song , AIST | “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors” |
115 | Dec. 9(Fri), 1:30 p.m. | #1323(E6-2. 1st fl.) | Dr. Jae Yoon Cho, POSTECH | Entanglement area law in strongly-correlated systems |
114 | Dec. 9(Fri), 4p.m. | #1323(E6-2. 1st fl. | Dr. Kun Woo Kim, KIAS | Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator |
113 | Dec. 8(Thu) 4p.m. | #1323(E6-2. 1st fl.) | Dr. Jinhyoung Lee, Hanyang University | Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator |
112 | Nov. 29(Tue) 4p.m. | #1323(E6-2. 1st fl.) | Dr. SungBin Lee, KAIST | Symmetry Protected Kondo Metals and Their Phase Transitions |
111 | Nov. 24(Thu) 4p.m. | #1323(E6-2. 1st fl.) | Dr. Jai-Min Choi, Chonbuk National Univiersity | Harmonic oscillator physics with single atoms in a state-selective optical potential |
110 | Nov. 18th (Fri) 10:30 a.m. | #5318(5th fl.) | Dr. 최 순 원, Havard University | Non-equilibrium many-body spin dynamics in diamond |
109 | Nov. 16 (Wed), 4p.m. | #1323(E6-2. 1st fl.) | Dr. Heung-Sik Kim , University of Toronto | Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators |
108 | Nov. 10th(Thu) 4 p.m. | E6-2. #1323(1st fl.) | Prof. Min Seok Jang, Electrical Engineering, KAIST | Low Dimensional Active Plasmonics and Electron Optics in Graphene |