visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-04-27 11:00 
일시 April 27 (Thu) 11 AM 
장소 E6-2 #1322 
연사 Dr. Kyung Ho Kim (Royal Holloway University of London) 
Royal Holloway University of London 에서 초천도 나노와이어 양자현상을 연구하고 계신 김경호 박사를 모시고 세미나를 진행할 예정입니다.
관심있는 분들의 많은 참여 부탁드립니다.
 
We are delighted to announce the upcoming seminar by Dr. Kyung Ho Kim  (Royal Holloway University of London).
 
Date: April 27 (Thu) 11 AM
Place: 1322 Natural Science (No Zoom broadcasting)
Speaker: Dr. Kyung Ho Kim  (Royal Holloway University of London)  
 
Title: Inverse Shapiro steps and coherent quantum phase slip in superconducting nanowires  
 
Abstract:
We observe clearly visible steps at constant currents I=2efn on the current voltage characteristic of a superconducting nanowire with integer n, exposed to microwave of frequency f [1]. These current steps are dual steps to the well-known Shapiro steps in Josephson junctions which are currently used for commercial Josephson voltage standard in quantum metrology. The dual Shapiro step, or inverse Shapiro step, was theoretically predicted more than 30 years ago in Josephson junctions [2], but it was elusive for the experimentalists due to challenges of circuit engineering. Superconducting nanowires are another system that is predicted to show the dual Shapiro steps due to the coherent quantum phase slip [3]. We embed a superconducting nanowire in an appropriate electromagnetic environment. The inverse Shapiro step is exceedingly promising for closing the so-called quantum metrology triangle as the voltage standard is based on the usual Shapiro steps. I will discuss physics of QPS in superconducting nanowires and condition for the observation of the current quantization.  
 
[1] Shaikhaidarov, R.S., Kim, K.H., Dunstan, J.W. et al. Nature 608, 45–49 (2022) 
[2] Averin, D.V., Zorin, A.B., Likharev, K.K.: Bloch oscillations in small Josephson junctions. Soviet Physics - JETP 61(2), 407 (1985) 
[3] Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nature Physics 2(3), 169 (2006)
 
번호 날짜 장소 제목
413 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
412 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
411 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
410 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
409 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
408 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
407 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
406 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
405 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
404 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
403 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
402 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정 file
401 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
400 2022-09-21 10:30  E6-1 #1501  [Update 세미나 영상] Distinguished Lecture 'The Magic of Moiré Quantum Matter' Prof. Pablo Jarillo-Herrero(Department of Physics, MIT) file
399 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
398 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
397 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
396 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
395 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
394 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file