visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-13 10:00 
일시 April 13 (Fri.), 10am 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Sungkun Hong 

Physics Seminar

 

Quantum meets Mechanics: from Quantum Information to Fundamental Research

 

Dr. Sungkun Hong

Vienna Center for Quantum Science and Technology, University of Vienna

 

April 13 (Fri.), 10am

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Studying quantum aspects of macroscopic moving bodies is a new emerging field in quantum physics. The main experimental approach is cavity optomechanics, where photons in the cavity are used to measure and manipulate motional states of mechanical oscillators. Cavity optomechanics, together with advancements in microfabrication of mechanical devices, has allowed us to observe and control mechanical resonators at the quantum level. This opens new exciting possibilities for quantum information science and for studying quantum physics in hitherto untested macroscopic scales.

In this talk, I will describe two different quantum optomechanics experiments that I have been doing in Vienna. First, I will present our progress in utilizing on-chip optomechanical devices as a new resource for quantum information. Using micro-fabricated silicon structures, we demonstrated the generation of quantum-correlated photon-phonon pairs, the generation and retrieval of single phonons, and the remote entanglement between two mechanical modes, paving the way for telecom-compatible optical quantum networks. Future directions of the work will also be discussed. Next, I will introduce a novel, hybrid optomechanical system consisting of optically levitated nanoparticles and micro-fabricated photonic crystal cavity. The system combines ultra-high mechanical quality of the levitated nanoparticle and strong optical transduction from the optical cavity. It thus will allow for quantum coherent experiments on particle’s motions even at room temperature. I will discuss the current status of the experiment as well as future plans of the work, particularly the matter-wave interferometry in an unexplored mass regime.

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
453 2016-06-16 16:00  #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
452 2016-07-07 14:00  #1323(E6-2. 1st fl.)  Let there be topological superconductors
451 2016-07-08 11:00  #1323(E6-2. 1st fl.)  Isostatic magnetism
450 2016-07-08 14:00  #1323(E6-2. 1st fl.)  Electronic quasiparticles in the quantum dimer model
449 2016-07-28 16:00  #1323(E6-2. 1st fl.)  Low Dimensional Electrons: On the Road to Hybrid Quantum Systems
448 2016-08-04 14:30  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
447 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
446 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
445 2016-09-05 16:00  Natual Scien Bldg.(E6)m #1501  Physics Colloquium : 2016 Fall file
444 2016-09-21 16:00  E6-2. #2502(2nd fl.)  Entanglement probe of two-impurity Kondo physics
443 2016-09-22 15:30  #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
442 2016-09-22 15:30  #1323(E6-2, 1st fl.)  Polarized 3He, Polarized Neutrons and New Interactions beyond the Standard Model
441 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
440 2016-09-29 16:00  E6-2 #1323 (1st floor)  Large-scale Silicon Photonic MEMS Switches
439 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
438 2016-10-07 13:30  E6-2. #1323(1st fl.)  “Symmetry and topology in transition metal dichalcogenide?”
437 2016-10-07 16:00  E6-2. #1323(1st fl.)  “Tilt engineering of 4d and 5d transition metal oxides?”
436 2016-10-17 11:00  #1323,(E6-2, 1st fl.)  IMS and examples of the studies on optoelectronic materials
435 2016-10-18 13:30  1st fl. #1323(E6-2)  "Visualization of oxygen vacancy in motion and the interplay with electronic conduction"
434 2016-10-18 15:00  E6-2. 1st fl. #1323  “Hybrid quantum systems with mechanical oscillators”