visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-10-28 11:00 
일시 Oct. 28 (Fri), 11:00AM 
장소 E6-2 #1323 
연사 김수란(경북대 물리교육과 교수) 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기한: 2023.10.27까지)
 
o 일시: 2022. 10. 28(금)  11:00
o 장소: E6-2 Room 1323
o Zoom Link: https://kaist.zoom.us/j/83127228653  회의 ID:  831 2722 8653
 
o 연사: 김수란 교수(경북대학교 물리교육과)
o 강연주제: Machine-Learning-Guided Prediction Models and Materials discovery for high Tc Cuprates
Abstract
Cuprates have been at the center of long debate regarding their superconducting mechanism; therefore, predicting the critical temperatures of cuprates remains elusive. We demonstrate herein, using ab initio computations, a new trend suggesting that the cuprates with stronger out-of-CuO2-plane chemical bonding between the apical anion (O, Cl) and apical cation (e.g., La, Hg, Bi, Tl) are generally correlated with higher Tc;max in experiments. Also, using machine learning, we predict the maximum superconducting transition temperature (Tc,max) of hole-doped cuprates and suggest the functional form for Tc,max with the root-mean-square-error of 3.705 K and R2 of 0.969. We have found that the Bader charge of apical oxygen, the bond strength between apical atoms, and the number of superconducting layers are essential to estimate Tc,max. Furthermore, we predict the Tc,max of hypothetical cuprates generated by replacing apical cations with other elements. Among the hypothetical structures, the cuprates with Ga show the highest predicted Tc,max values, which are 71, 117, and 131 K for one, two, and three CuO2 layers, respectively. These findings suggest that machine learning could guide the design of new high-Tc superconductors in the future.
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
번호 날짜 장소 제목
508 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
507 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy
506 2023-11-08 10:00  E6-2,#2502 & zoom  [High Energy Theory seminar] The Vacuum Sector of Asymptotically Isometric Codes
505 2023-11-01 16:00  E6-2, #2502  [High Energy Theory Seminar] Modular functions and 3D N=4 rank-zero superconformal field theories
504 2023-10-19 11:00  E6-2 #1322  Emergent functionalities of iridium oxide films with different growth orientation file
503 2023-10-11 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Particle Physics with Neutrinos file
502 2023-10-11 16:00  E6-2, Rm2502  [High Energy Theory Seminar] Axion Magnetic Resonance
501 2023-10-04 16:00  E6-2, #2502  [High-Energy Theory Seminar] Moving towards quantum technologies: the case of quantum batteries
500 2023-09-27 16:00  E6, Rm#2501  Chiral Magnets: Domain-Wall Skyrmions and String Theory Realization
499 2023-09-26 16:00  E6-2, #2502  [High Energy Theory Seminar]A new step in interacting dark sector cosmologies
498 2023-09-21 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Axion Magnetic Resonance file
497 2023-09-18 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP Seminar] Searching for axions in quantum vacuum birefringence file
496 2023-09-18 11:00  E6-2, #1322  Magic polarisation trapping of polar molecules for tunable dipolar interactions file
495 2023-09-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminar] Dark matter searches in Water Cherenkov Detectors file
494 2023-09-13 16:00  E6-2, #2502  [High Energy Theory Seminar] Cosmic Birefringence from Dark Photon
493 2023-09-07 12:00  E6-2 #1323  2023 가을학기 광학분야 및 응집물리 특별세미나 전체 일정 file
492 2023-08-29 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards string loop corrections in Calabi-Yau orientifold compactifications.
491 2023-08-24 12:00  E6-1 #1501  2023 가을학기 콜로키움 전체 일정 file
490 2023-08-24 11:00  E6, Rm#1323  Advancing magnonic metamaterials: spin waves in nanomagnetic arrays
489 2023-08-23 16:00  E6-2, #1322  [High Energy Theory Seminar] A spacetime tensor network for AdS3/CFT2