visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-05 16:00 
연사  
장소 E6-2. 1st fl. #1322 

"A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space"

 

Apr. 5 (Tue.), 4PM, E6-2. 1st fl. #1322
Dr. Ara Go, Columbia University

 

The exact diagonalization (ED) has many attractive advantages as an impurity solver for the dynamical mean-field theory (DMFT). It solves the impurity Hamiltonians with any types of interaction in contrast to the quantum Monte Carlo, which suffers from the severe sign problem in low symmetry situation. However, the ED approximates the continuous bath to a finite quantum mechanical problem to reduce the system size, so that the total number of orbitals is less than 14. This is insufficient, to treat most multi-orbital systems via the DMFT. To overcome this limit, we first adapt the configuration interaction (CI) as an impurity solver. We show the computed optical conductivity through this method is in excellent agreement with the experiment at gap edge. We have further developed adaptive truncations of the Hilbert space, which can handle much larger impurity Hamiltonians without loosing the advantages of the ED. We benchmark the one-dimensional Hubbard model and show that this impurity solver can obtain sufficiently accurate Green functions of impurity Hamiltonian with 24 electronic orbitals. The solvable system size in this method is larger than twice of the ED limit, and this capability enlarges the DMFT applications to many unexplored problems. I also discuss the possible applications, focussing on the multi-orbital systems with low symmetry.

 

Contact: MyungJoon Han, Physics Dept., (mj.han@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
79 2016-06-14 15:00    No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
78 2016-06-01 16:00    Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
77 2016-06-01 10:30    Welcome to Nature Photonics
76 2016-05-31 16:00    Understanding 3D tokamak physics towards advanced control of toroidal plasma
75 2016-05-24 16:00    Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
74 2016-05-19 16:00    Nonlinear/quantum optical effect in silicon nano-photonics
73 2016-05-19 15:00    The CERN Resonant WISP Search: Development, Results and Lesson-Learned
72 2016-05-17 11:00    The CERN Resonant WISP Search: Development, Results and Lesson-Learned
71 2016-05-16 16:00    Tuning microwave cavities with biased nonlinear dielectrics for axion searches
70 2016-05-13 16:00    Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
69 2016-05-13 13:30    Aperiodic crystals in low dimensions
68 2016-05-11 16:00    The quest for novel high-temperature superconductors---Prospects and progress in iridates
67 2016-04-28 15:00    Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
66 2016-04-26 16:00    Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
65 2016-04-19 14:00    Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
64 2016-04-18 15:30    First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
63 2016-04-12 16:00    Confinement of Superconducting Vortices in Magnetic Force Microscopy
62 2016-04-08 16:00    Spectroscopic studies of iron-based superconductors : what have we learned?
61 2016-04-08 13:30    Theoretical Overview of Iron-based superconductors and its future
60 2016-04-06 15:30    Superconducting Quantum Interference Devices for Precision Detection