visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-11-03 16:00 
일시 Nov. 3 (Fri.), 4:00 PM 
장소 #1323 (1st fl., E6-2.) 
연사 Dr. SungDae Ji (Max Planck POSTECH/Hshinchu Center (MPK)) 

The seminal work of Anderson triggered a great deal of theoretical and experimental efforts to search for the novel quantum spin liquid (QSL) states in matters, and it has become one of central issues in contemporary condensed matter physics. The QSL state, a long-range quantum entangled state, is represented by a topological order and fractionalization of constituent magnetic moments. While the most QSL states have been described by deconfined spinons as an elementary excitation in frustrated magnets, Kitaev’s QSL state is exactly derived by fractionalizing the spin excitation into Majorana fermions in a two-dimensional honeycomb lattice, the so-called Kitaev lattice, with the ansatz of bond dependent Ising-like spin interaction. In the past decade, experimental realization of the fascinating Kitaev honeycomb QSL model has been eagerly pursued. In this talk, I will present the experimental evidences of fractionalized Majorana fermions in a high quality α-RuCl3 single crystal. Neutron and x-ray diffraction measurements reveal that the low-temperature crystal structure forms the perfect Ru-honeycomb lattice, which provides an ideal platform for the Kitaev honeycomb quantum spin lattice. Extensive thermodynamic and neutron spectroscopic measurements directly proved fractionalized Majorana fermion excitations as a result of thermal fractionalization of Jeff = ½ pseudospins, which is well reproduces by numerical predictions obtained from the Kitaev model.

 

20171103_지성대.pdf

번호 날짜 장소 제목
124 2017-04-05 12:00  Room 101, Creative Learning Bldg.(E11)  2017년 4월 첫수 융합포럼 개최 안내(물리학과 & 원자력 및 양자공학과 공동 개최)/The First Wednesday Multidisciplinary Forum in April 2017 organized by Dept. of Physics & Dept. of Nuclear & Quantum Engineering file
123 2017-03-24 16:00  #1323 (1st fl. E6-2)  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
122 2017-03-24 14:30  #1323 (1st fl. E6-2).  Topological Dynamics
121 2017-03-21 16:00  Seminar Room 1323  Spring 2017: Physics Seminar Serises file
120 2017-03-06 16:00  Seminar Room 1501  Spring 2017: Physics Colloquium file
119 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
118 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
117 2017-01-09 16:00  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions" file
116 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
115 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
114 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
113 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
112 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
111 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
110 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
109 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
108 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
107 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
106 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
105 2016-11-1 10:30  #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media