visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-04-11 13:30 
일시 April 11 (Wed), 1:30pm 
장소 #1323 (E6-2, 1st fl.) 
연사 Dr. Yongsoo Yang 

Physics Seminar

 

Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level

 

Dr. Yongsoo Yang

Dept. of Physics and Astronomy, UCLA

 

April 11 (Wed), 1:30pm

#1323 (E6-2, 1st fl.)

 

 

Abstract:

Modern science and technology rely on functional materials, and the physical properties of these materials often strongly depend on defects, local disorder, nanoscale heterogeneities, and grain structures at the atomic scale. Traditional crystallography, which is reliant on periodicity, has been the main method for determining crystal structures, but cannot determine defects or other non-crystalline features. My work goes beyond crystallography. Without any prior assumption of underlying structure, atomic electron tomography (AET) is now able to locate the 3D coordinates of individual atoms with picometer precision and with elemental specificity [1-3]. I will show a variety of complex atomic structures with 3D atomic-level details; including grain boundaries, chemical order/disorder, phase boundaries, and anti-site point defects. I will further demonstrate that these experimentally determined atomic structures can be combined with quantum mechanical calculations to provide an atomic-level understanding of physical properties such as 3D strain tensors, magnetic moments and local magnetocrystalline anisotropy. Understanding the relationship between atomic structure and physical properties will open up new avenues in condensed matter physics and allow the rational design of novel materials at the atomic scale [1-2].

[1] Yang et al., Nature 542, 75-79 (2017).

[2] Xu et al., Nature Mater. 14, 1099-1103 (2015).

[3] Pryor*, Yang* et al., Sci. Rep. 7:10409 (2017).

 

Contact: Yongseop Kang, Administration Team (T.2599)

 

Department of Physics

번호 날짜 장소 제목
133 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
132 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정 file
131 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
130 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
129 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
128 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
127 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
126 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
125 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
124 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
123 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
122 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
121 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
120 2022-10-27 16:00  E6-2 #1323  (광학분야 세미나) Cavity optomechanical systems for quantum transduction
119 2022-10-28 11:00  E6-2 #1323  [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
118 2022-11-03 13:00  E6-2 #1323  [High-Energy Theory Seminar] Supersymmetric observables via Fermi-gas method
117 2022-11-03 16:00  E6-2 #1323  (광학분야 세미나) Single-photon emission from low-dimensional materials
116 2022-11-04 16:30  Zoom  초세대 협업연구실 Quantum- & Nano-Photonics_Multifunctional neural probes with integrated nanophotonics file
115 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
114 2022-11-10 16:00  E6-2. 1st fl. #1323  Probing the Origin of Cosmic Infrared Background and Future Prospects with SPHEREx