visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-09-02 14:30 
일시 Sep. 02(Fri) 2:30 PM 
장소 E6-2(1st fl.), #1323 
연사 Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST 

Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction

 

Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST

 

Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.


Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
191 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
190 2018-10-24 10:30  E6-1, Lecture Room 1501(1F)  Photonic integration of next-generation clocks and Hertz-absolute-accuarcy optical frequenncy synthesizers file
189 2018-10-19 10:00  #1323, E6-2  Energy conversion processes during magnetic reconnection in a laboratory plasma file
188 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
187 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file
186 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
185 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
184 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
183 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
182 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
181 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
180 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
179 2018-09-07 15:00  학술문화관 (E9), 2층 양승택 오디토리움  Recent developments in density functional theory: From new functionals to the nature of the chemical bond file
178 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
177 2018-09-04 14:30  E6-2. 2st fl. #2502  Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses file
176 2018-08-01 11:00  양분순 빌딩 (E16-1) 207호  Future of AI: Is the brain a computer? file
175 2018-07-27 15:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima file
174 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
173 2018-07-26 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Inflation in String Theory and Backreaction file
172 2018-07-13 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Loop Induced Single Top Partner Production and Decay at the LHC