visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:2873

날짜 2017-02-01 14:00 
일시 Feb. 1 (Wed.), 2p.m. 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 장소 제목
333 2018-12-07 14:30  E6-2. 1st fl. #1323  Spin generation from heat and light in metals file
332 2018-12-07 16:00  E6-2. 1st fl. #1323  Novel probes of interacting electrons in 2D systems file
331 2018-12-11 16:00  E6-2. 1st fl. #1323  Natural compact representation of Matsubara Green’s functions: applications to analytic continuation and quantum many-body simulations file
330 2018-12-16 16:00  E6-2. 1st fl. #1323  Lectures on 2d Conformal Field Theory file
329 2018-12-26 16:00  E6-1. 3rd fl. #3434  Informal Workshop on Topology and Correlation file
328 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
327 2018-12-27 16:00  E6-2. 1st fl. #1323  Quantum Innovation (QuIN) Laboratory file
326 2019-01-07 15:00  E6-2. 2st fl. #2501  Many-Body Invariants for Multipoles in Higher-Order Topological Insulators file
325 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
324 2019-01-23 16:00  Rm. C303, Creation Hall (3F), Munji Campus  Ultrasensitive Microwave Bolometer: Opportunity for Axion Detectors file
323 2019-02-21 16:00  #5313, E6-2  B-meson charged current anomalies - Theoretical status file
322 2019-02-25 16:00  Rm. 1501 (E6)  Spring 2019: Physics Colloquium file
321 2019-03-21 16:00  RM. 1323, E6-2  Spring 2019: Physics Seminar Serises file
320 2019-03-26 15:00  E6-2. 2st fl. #2501  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file
319 2019-03-29 14:30  E6-2. 1st fl. #1323  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
318 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
317 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
316 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
315 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
314 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file