visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-12-11 13:30 
일시 2015/12/11, 1:30PM 
장소 E6-2, #1323 
연사 Dr. KwangYong Choi  (Chung-Ang University) 

Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9

 

Dec. 11. (Fri.), 13:30 PM,  E6-2. 1st fl. #1323
Dr. KwangYong Choi  (Chung-Ang University)

 

Geometrically frustrated antiferromagnets are a versatile reservoir for emergent quantum-correlated phenomena such as spin liquids, fractionalized excitations, and magnetic monopoles. Recent experiments on the 6H-perovskite family Ba3AB2O9 (A=Cu, Ni, Co, Ru, Ir; B=Sb, Ti) have disclosed a variety of interesting ground states: a random singlet, spin liquid, spin freezing, and 120? ordering, depending on a spin number, spin-orbit coupling, and Jahn-Teller (JT) distortions. In this talk, I will briefly introduce spin liquid in the context of topological order and then present experimental results on the two materials Ba3CuSb2O9 and Ba3Ru1-xIrxTi2O9. In Ba3CuSb2O9, a combined effect of frustration and local JT distortions may create a novel spin-orbital entangled state. Our ESR results provide evidence for intrinsic coupling of spins to orbital degrees of freedom and thereby demonstrate that magnetism is dictated by a spatiotemporal structure of the JT distortions. In Ba3Ru1-xIrxTi2O9, a 1/3 depleted triangular lattice with strong spin-orbit coupling we address the possibility of spin-orbit tuned spin liquids. For the 4d Ru compound, we find experimental signatures of a coexisting spin freezing and dynamically fluctuating state. In the 5d Ir counterpart, spin-orbit coupling melts residual spin freezing while stabilizing a spin liquid state. Our comparative study evidences that spin depletion and spin-orbit coupling conspire to promote a quantum spin liquid in triangular antiferromagnets.

 

Contact: Heung Sun Sim, Physics Dept., (hs_sim@kaist.ac.kr)

번호 날짜 장소 제목
65 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
64 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
63 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
62 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
61 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
60 2016-04-06 15:30  E6-2, RM #1323  Superconducting Quantum Interference Devices for Precision Detection
59 2016-04-05 16:00  E6-2. 1st fl. #1322  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
58 2016-04-04 09:30  KAIST Natural Science Building (E6-2), RM #4314  Radio frequency engineering
57 2016-04-01 16:15  E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
56 2016-04-01 14:30  E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
55 2016-03-11 16:00  E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
54 2016-03-11 13:30  E6-2, 1501 외  Physics Seminar Serises : 2016 Spring file
53 2016-03-11 13:30  E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
52 2016-03-07 16:00  E6, 1501  Physics Colloquium : 2016 Spring file
51 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
50 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
49 2015-12-17 11:00  E4(KI Building), Matrix Hall (2nd fl.)  Wavefront engineering for in-vivo Deep brain imaging
48 2015-12-11 15:45  E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
» 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
46 2015-12-09 14:00  E6-2, #1323  SWELLABLE COLLOIDAL PARTICLES ARE SWELL