visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-12-09 11:00 
일시 Dec. 9 (Fri), 11:00AM 
장소 E6-2 #1323 
연사 김도헌(서울대 물리천문학부 교수) 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기간: 2022.12.15-2023.03.14, 3개월)
 
 
1. Date / Time 
    - Dec  9, 2022
    - 11:00 AM (KST)
 
2. Place: E6-2 #1323
 
3. Speaker
    - 김도헌 (서울대 물리천문학부 교수)
 
4. Talk Title
    - Two-electron quantum dot spin qubits in isotopically purified silicon
 
5. Abstract
Engineered spin-electric coupling is essential to enable fast manipulation of spins in semiconductor quantum dot (QD) nanostructures, especially in silicon. Although the placement of on-chip micromagnets has enabled single-spin qubits in silicon with gate fidelity to reach surface code-based error correction threshold, corresponding results using encoded spin qubits, for example, single-triplet qubits with high-quality quantum oscillations, have not been demonstrated. Instead, the spin-valley coupling has been recently used to enhance the electrical controllability of two-electron spin qubits in silicon at the expense of increased susceptibility to charge noise. Here, we demonstrate fast singlet-triplet qubit oscillation (~ 100MHz) of a quantum dot spin qubit in isotopically purified 28Si/SiGe substrate with an on-chip micromagnet in the regime where valley-splitting in each quantum dot exceeds 300 ueV. Combining rf-reflectometry-based single-shot readout and real time Hamiltonian estimation, we show that the oscillation quality factor of an encoded spin qubit over 1000 can be achieved. We further present the measurement of single-triplet qubit oscillation and variation of coherence time near the micro-magnet’s magnetization reversal, offering a route to in-situ tune magnetic field gradient and hence the Larmor frequency of the singlet-triplet qubit in silicon.
 
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
 
번호 날짜 장소 제목
공지 2022-11-25 11:00  E6-2 #1323  [Update 세미나영상](응집물리 세미나) DMFT+ NRG: From models to real materials, from local to nonlocal correlations
237 2019-06-27 14:00  #2502, E6-2  Gapless Kitaev Spin Liquid to Loop and String Gases file
236 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
235 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
234 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
233 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
232 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
231 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
230 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
229 2019-05-21 16:00  #5318, E6-2  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
228 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
227 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
226 2019-05-03 11:00  E6-2. 2st fl. #2502  Exotic Magnetism file
225 2019-05-02 16:00  #1323, E6-2  Anomalous optical properties of halide perovskites file
224 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
223 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
222 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
221 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
220 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
219 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
218 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file