visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-06 15:30 
일시 April 6, 2016 (Wed), 3:30 PM 
장소 E6-2, RM #1323 
연사 Dr. Andrei Matlashov (Los Alamos National Laboratory) 

Superconducting Quantum Interference Devices for Precision Detection  
 
Dr. Andrei Matlashov (Los Alamos National Laboratory)
April 6, 2016 (Wed), 3:30 PM

E6-2, RM #1323
 
Abstract:  

Superconducting weak-link junctions and Quantum Interference Devices have been invented 50 years ago. This invention has prompted some interesting quantum physics, but the most significantly SQUIDs have brought a break-through to the field of experimental physics in building practical instruments with signal resolution close to the theoretical limit. This development has fundamentally changed experimental physics and precision instrumentation. 
   
 The first immediate consequence of invention of SQUID-based instrumentation was the appearance of Biomagnetism – a research field associated with measurements of extremely weak magnetic fields of biological origin, such as magneto-cardiography or MCG and magneto-encephalography or MEG. SQUID technology has significantly improved signal resolution in multiple areas of research, which had notable effects in the fields of biology, chemistry, astronomy, many applied engineering areas, and experimental physics, including elementary particle physics and axions search. 
 

In this presentation, I will briefly review my more than 30 years of experience working in development of SQUID-based instrumentation in various fields of application. It includes Biomagnetism, non-destructive evaluation, ultra-low field magnetic resonance imaging, explosive detection, and magnetic relaxometry with nano-markers. I will also discuss SQUID applications in experimental physics including elementary particle physics.  

번호 날짜 장소 제목
526 2024-03-08 11:00  E6-2 #1323  2024 봄학기 광학분야 및 응집물리 특별세미나 전체 일정 file
525 2024-02-26 16:00  E6-1 #1501  2024 봄학기 콜로키움 전체 일정 file
524 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
523 2024-01-26 15:00  E6-2 #1323  In-situ 4D-STEM studies on surface reconstruction and polarization switching of perovskite oxides
522 2024-01-25 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  [CAPP seminars] Detecting Gravitational Waves by Elecromagnetic Cavity
521 2024-01-24 15:00  E6-2 #1323  Determination of single molecule loading rate during mechanotransduction file
520 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
519 2024-01-16 14:00  E6-2, #1323  Dimer Physics and Superconductivity in La3Ni2O7
518 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
517 2023-12-19 16:00  E6-2, #1323  [High Energy Theory Seminar] Non-invertible symmetries, leptons, quarks, and why multiple generations
516 2023-12-14 16:00  CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus  Superconducting qubits for large-scale quantum computers file
515 2023-12-08 10:30  E6-2, Rm#2502  Novel transport phenomena in insulators
514 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
513 2023-11-29 10:00  Zoom  [High Energy Theory Seminar] Averaged null energy and the renormalization group
512 2023-11-23 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
511 2023-11-22 16:00  E6-2, #2502  [High Energy Theory Seminar] Renormalization and the Hierarchy Problem
510 2023-11-22 10:00  E6-2, #5301 & zoom  [High Energy Theory Seminar] Exact Quantum Algorithms to Recognize Quantum Phases of Matter
509 2023-11-16 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Electric-field control of emergent phenomena in correlated oxide thin films
508 2023-11-15 16:00  E6-6, #119  Quantum hydrodynamic theory for plasmonics: from molecule-coupling to nonlinear optics
507 2023-11-09 16:00  E6-2(Natural Science B/D). 1st fl. #1323  Assessing the Capability of Near-Term Photonic Devices Towards Quantum Supremacy