visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
연사  
장소 E6-2, 2nd fl. #2502 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
354 2019-09-27 14:30    Spin-charge conversion in topological insulators for spintronic applications file
353 2019-09-27 16:00    0D/1D/2D/3D III-V materials grown by MBE for Optelectronics file
352 2019-10-15 16:00    Moiré superlattices and graphene quasicrystal file
351 2019-10-16 16:00    Emergent black holes and monopoles from quantum fields file
350 2019-10-17 16:00    Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
349 2019-10-25 15:00    Physics Seminar file
348 2019-10-29 10:00    Unconventional Spin Transport in Quantum Materials file
347 2019-10-29 14:30    Quantum sensing file
346 2019-10-29 16:00    Particles and Gravity via String Geometry file
345 2019-10-31 10:00    Kondo meets Hubbard: Impurity physics for correlated lattices file
344 2019-11-01 14:30    Squeezing the best out of 2D materials file
343 2019-11-01 16:00    Electron transport through weak-bonded contact metal with low dimensional nano-material file
342 2019-11-05 16:00    Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
341 2019-11-07 16:00    Integrated quantum photonics with solid-state quantum emitters file
340 2019-11-14 16:00    Semi-classical model of polariton propagation file
339 2019-11-20 16:00    Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
338 2019-11-28 16:00    Generation of coherent EUV emissions using ultrashort laser pulses file
337 2019-12-03 16:00    Toward Quantum Materials with Correlated Oxides file
336 2019-12-05 16:00    Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
335 2019-12-13 13:00    Computational Material Designs: Current Status and Future Directions file