visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-12-14 15:00 
일시 Thursday, December 14, 2017 at 3:00 pm 
장소 Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus 
연사 Chunglee Kim (KASI) 

Since 2015, the advanced LIGO (Laser Interferometer Gravitational-wave Observatory) in USA and the advanced Virgo in Europe have been successfully discovering black holes and neutron stars via gravitational waves (GWs) in cosmological distances. After the original discovery of a black hole binary (BBH, GW150914) by LIGO, more BBHs are confirmed. The observed waveform of GWs from BBH coalescences (inspiral-merger-ringdown phases) are well described by Einstein's general relativity as well as approximations. LIGO-Virgo's another major breakthrough was thr discovery of GW170817. It is the first extragalactic neutron star - neutron star binary (NS-NS). It turned out that GW170817 is a progenitor of GRB170817A (independently discovered by the Fermi space telescope). Within 24 hrs since the discovery of GW170817, extensive international observation campaign were made using electromagnetic waves (from gamma rays to radio) as well as neutrinos. GW170817 will be recorded as one of the most successful global multi-messenger effort. With the discoveries of BBHs and NS-NS by LIGO and Virgo, GW astronomy has truly begun. The next decades will be a golden era for stellar astrophysics and many surprises are expected. Furthermore, cosmology with GWs seems also promising. Distance measure by GWs for GW170817 (at 40 Mpc) is already powerful enough to put constraints on the Hubble constant. In future, there will be a global network of GW observatories on Earth and in space and broader frequency ranges will be accessible in GWs. In this talk, I will present the highlights of GW astronomy and astrophysics based the LIGO-Virgo observations so far. I will also discuss the prospects of multi-messenger astronomy.

번호 날짜 장소 제목
353 2018-10-04 16:00  #1323, E6-2  Engineering light absorption in an ultrathin semiconductor metafilm file
352 2018-10-11 16:00  #1323, E6-2  Dirac electrons in a graphene quasicrystal file
351 2018-10-12 14:30  E6-2. 1st fl. #1323  Quantum Advantage in Learning Parity with Noise file
350 2018-10-12 16:00  E6-2. 1st fl. #1323  Direct observation of a two-dimensional hole gas at oxide interfaces file
349 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
348 2018-10-16 10:00  #1323, E6-2  Capturing protein cluster dynamics and gene expression output in live cells file
347 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file
346 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
345 2018-10-19 10:00  #1323, E6-2  Energy conversion processes during magnetic reconnection in a laboratory plasma file
344 2018-10-24 10:30  E6-1, Lecture Room 1501(1F)  Photonic integration of next-generation clocks and Hertz-absolute-accuarcy optical frequenncy synthesizers file
343 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
342 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
341 2018-11-01 16:00  #1323, E6-2  Direct holography from a single snapshot file
340 2018-11-08 16:00  #1323, E6-2  Conformality lost file
339 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
338 2018-11-09 16:00  E6-2. 1st fl. #1323  Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
337 2018-11-21 15:00  #1323, E6-2  Engineering topological quantum physics at the atomic scale file
336 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file
335 2018-11-23 15:00  E6-2. 2st fl. #2501  Entanglement string and Spin Liquid with Holographic duality file
334 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file