visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2024-01-26 15:00 
일시 2024.01.26(Fri) 3:00pm 
장소 E6-2 #1323 
연사 :Prof. Sang Ho Oh (Department of Energy Engineering, Korea Institute of Energy Technology) 
물리학과 구성원분들께,
아래와 같이 세미나를 개최하오니 많은 참석 부탁드립니다.
 
- Speaker : Prof. Sang Ho Oh (Department of Energy Engineering, KENTECH Institute for Energy Materials and Devices, Korea Institute of
                Energy Technology)
- Date : 2024.01.26(Fri) 3:00pm
- Place : E6-2  #1323
- Title : "In-situ 4D-STEM studies on surface reconstruction and polarization switching of perovskite oxides"
- Abstract : 
4D STEM is an emerging technique in electron microscopy, enabling the acquisition of convergent electron beam diffraction (CBED) patterns in every pixels in STEM mode. This technique is versatile and finds many useful applications in materials science, where conventional TEM and STEM techniques are unable to characterize. For example, the quantitative interpretation of the CBED pattern can provide detailed information on the crystal symmetry and atomic positions at an Å level, allowing the precise determination of lattice strain and atomic displacement. 4D STEM data, acquired at an optimized condition for ptychography and treated by iterative phase reconstruction algorithms, can be used for atomic-scale potential and charge density mapping. Further, the ptychography of 4D STEM can achieve a good depth resolution in the range of ~2-5 nm once the multislice wave propagation is incorporated into the iterative phase reconstruction process. If all these capabilities of 4D STEM is combined with in-situ TEM experiments, such as heating and electrical biasing, tremendous breakthrough can made in various fields of materials science and solid-state physics. In this seminar, some of our recent (unpublished) works on the surface reconstruction of SrTiO3 (001) at high temperatures and the mapping of field-induced polarization switching of relaxor ferroelectric Ba0.5Sr0.5TiO3 thin films will be presented. 
번호 날짜 장소 제목
373 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
372 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
371 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
370 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
369 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
368 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
367 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
366 2022-05-11 16:00  E6-2. #1323 & Zoom  Gravity as a phenomenon in quantum dynamics
365 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
364 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
363 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
362 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
361 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
360 2022-04-15 11:00  Online seminar  (응집물리 세미나) First-principles studies of polar oxides and their applications file
359 2022-04-14 16:00  E6 1323  (광학분야 특별세미나)Holographic tomography of dielectric tensors at optical frequency
358 2022-04-13 10:30  E6 #1323/zoom  Harnessing topology and correlations from singularities in 3d-kagome metals
357 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
356 2022-04-08 11:00  E6-1 #1323  (응집물리 세미나) Flat-surface-assisted physical phenomena occurring in single crystal metal thin film file
355 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
354 2022-04-01 16:00  Zoom webinar  High-field Electron Transport and Interaction Induced Phenomena in 2D Materials file