visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-09-26 11:00 
일시 Sep. 26 (Tue.), 11AM 
장소 #1323 (E6-2. 1st fl.) 
연사 Dr. Yukiaki Ishida / ISSP, University of Tokyo 

Time-resolved ARPES study of Dirac and topological materials

 Dr. Yukiaki Ishida / ISSP, University of Tokyo

 Sep. 26 (Tue.), 11AM

#1323 (E6-2. 1st fl.)

 

 

Time- and angle-resolved photoemission spectroscopy (TARPES) has become a powerful tool to investigate the non-equilibrated states and dynamics of matter from an electronic structural point of view. Being a surface sensitive method, TARPES has also opened pathways to explore the ultrafast phenomena occurring on the edge of matter. We present investigations done on Dirac and topological materials by using a TARPES apparatus that achieves the energy resolution of 10.5 meV and high stability [1].

       1. Classification of the topological phase of matter:

In 2008, it was demonstrated that there are two classes in non-magnetic insulators. A topological twist can be defined for the bulk band structure, and those that have the twist belong to the topologically-nontrivial class. The effect of the twist appears on the edge: On surface of topological insulators (TIs), novel Dirac-type dispersion is formed. Thus, the classification can be done by investigating whether the surface Dirac dispersion exists or not. 

2. Functioning surface of topological insulators by light:

We discovered that surface photo-voltage (SPV) can emerge on TIs when the bulk is sufficiently insulating [5]. That is, TIs now meet the well-known opto-electronic function of semiconductors. We discuss that the SPV effect can be utilized to generate spin-polarized current on TI surface, and present the ongoing research towards this end. 

3. Ultrafast dynamics of Dirac electrons:

Massless Dirac fermions have the ability to absorb light of whatever color. Thus, Dirac fermions are prospective in opto-electronics. In fact, ultrashort pulses of any color can be created by using TIs and graphitic materials. Broad-band lasing may also be realized if a population inversion can be formed across the Dirac point. Firm understanding of the Dirac electron dynamics thus becomes of paramount importance. We show that an inverted population is realized in the surface Dirac band of a TI Sb2Te3 [6]. Dynamics being either within or beyond a simple two-temperature model scheme is observed in layered Dirac semimetals such as graphite and SrMnBi2 [7].

[1] Y. Ishida et al., Rev. Sci. Instrum. 85, 123904 (2014); Y. Ishida et al., Sci. Rep. 6, 18747 (2016). 

[3] P. Zhang et al., Phys. Rev. Lett. 118, 046802 (2017). 

[3] S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014). 

[4] I. Belopolski et al., Nature Commun. 7, 13643 (2016). 

[5] Y. Ishida et al., Sci. Rep. 5, 8160 (2015); M. Neupane et al., Phys. Rev. Lett. 115, 116801 (2015).

[6] S. Zhu et al., Sci. Rep. 5, 13213 (2015). 

[7] Y. Ishida et al., Sci. Rep. 1, 64 (2011); Y. Ishida et al., Phys. Rev. B 93, 100302(R) (2016). 

 

번호 날짜 장소 제목
367 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
366 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
365 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
364 2016-09-29 16:00  E6-2. #2501(2nd fl.)  Exploring the phase diagram of BaBiO3: epic voyage of just another bad trip?
363 2019-06-12 15:00  Rm# 1323, E6-2  The relation between free and interacting fermionic SPT phases file
362 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
361 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
360 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
359 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
358 2018-05-11 16:00  E6-2. 1st fl. #1323  암페어 단위 재정의와 단전자 펌프 소자 개발 file
357 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
356 2018-07-02 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  High Precision Magnetic Field Measurement for the Muon g-2 Experiment file
355 2015-10-16 15:00  E6-2, 5th fl. #5318  High Magnetic Fields to Probe the sub-eV range of Particle/Astroparticle Physics - From the OSQAR experiments at CERN up to new perspectives at LNCMI-Grenoble
354 2018-11-09 14:30  E6-2. 1st fl. #1323  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
353 2022-03-29 10:00  E6 #1501/zoom, E6 #2502/zoom  Non-reciprocal phase transitions file
352 2022-03-31 10:00  E6 #1501/zoom  Weiss fields for Quantum Spin Dynamics file
351 2020-10-15 17:00  https://bit.ly/3ndIiJn  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
350 2023-05-03 16:00  E6-2, #2502  Probing microscopic origins of axions by the chiral magnetic effect
349 2022-11-09 16:00  E6-2. 1st fl. #1323  Radio Astronomy, Radio Interferometry, and Multi-wavelength Studies on Relativistic Jets
348 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file