“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”
2017.08.31 11:52
장소 | #5318(E6-2. 5th fl.) |
---|---|
일시 | AUG. 31 (Thu.), 2 PM |
연사 | Prof. Hiroaki Ishizuka (The University of Tokyo) |
“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”
Prof. Hiroaki Ishizuka (The University of Tokyo)
AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)
Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms.
To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].
In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].
[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981).
[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).
[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).
[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).
[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).
[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).
[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).
[8] Q. Ma et al., preprint (arXiv: 1705.00690).
Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
214 | 2015/11/28, 10AM | E6-2, #1323 | Dr. Suyong Jung (Korea Research Institute of Standards and Science) | Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier |
213 | May. 14 (Fri.), 02:30 PM | Online seminar | Dr. Suyong Jung(KRISS) |
Electrically tunable spin valve effect in vertical van-der-Waals magnetic tunnel junctions
![]() |
212 | Apr. 2 (Fri.), 02:30 PM | Online(Zoom) | Dr. Tae Hyun Kim (SNU) | Quantum computing and entanglement generation using trapped ions and photons |
211 | 2016/03/11 4 PM | E6-2. 1st fl. #1501 | Dr. Tae-Hwan KIM (POSTECH) | Jan. Switching handedness of of chiral solitons in Z4 topological insulators |
210 | Mar. 29 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. Taeyoung Choi |
Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM
![]() |
209 | Jun. 18 (MON), 10:00 AM | E6-2. 2nd fl. #2502 | Dr. Thibault VOGT |
Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms
![]() |
208 | October 16 (Tue.), 10:00 AM | #1323, E6-2 | Dr. Won-Ki Cho |
Capturing protein cluster dynamics and gene expression output in live cells
![]() |
207 | 2015/11/10, 4PM | E6-2, #1323 | Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) | Rapid heating of matter using high power lasers |
206 | 2015/12/01, 4PM | E6-2, #1323 | Dr. Yeong Kwan Kim(Lawrence Berkeley National Laboratory, USA) | Introducing extra dimensions to spectroscopic studies of advanced quantum materials |
205 | Sep. 02(Fri) 2:30 PM | E6-2(1st fl.), #1323 | Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST | Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction |
204 | Sep. 02(Fri) 4:00 PM | E6-2(1st fl) #1323 | Dr. Yong-Joo Doh, Department of Physics and Photon Science, GIST | Quantum Electrical Transport in Topological Insulator Nanowires |
203 | October 15 (Mon.), 16:00 PM | #1323, E6-2 | Dr. Yongjoo Baek |
Universal properties of macroscopic current-carrying systems
![]() |
202 | April 11 (Wed), 1:30pm | #1323 (E6-2, 1st fl.) | Dr. Yongsoo Yang |
Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level
![]() |
201 | May. 13 (Fri.), 04:00 PM | 자연과학동(E6-2) 1st fl. #1323 | Dr. Yosep Kim(Center for Quantum Information, KIST) |
High-fidelity iToffoli gate for fixed-frequency superconducting qubits
![]() |
200 | May. 12 (Fri.), 01:30 PM | E6-2. 1st fl. #1323 | Dr. Young Kuk Kim | Topological Dirac insulator |
199 | April 11 (Wed), 4:00pm | #1323 (E6-2, 1st fl.) | Dr. Young-Sik Ra |
Non-Gaussian states of multimode light generated via hybrid quantum information processing
![]() |
198 | May 13 (Fri.), 1:30 PM | E6. #1501(1st fl.) | Dr. Young-Woo Son, Dept. of Physics, KIAS | Aperiodic crystals in low dimensions |
197 | Mar. 16 (Fri.), 04:0 PM | E6-2. 1st fl. #1323 | Dr. YoungDuck Kim |
Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics
![]() |
196 | 2015/11/06, 4:30 PM | E6-2, #5318 | Dr. Youngkuk Kim (University of Pennsylvania) | Topological Dirac line nodes in centrosymmetric semimetals |
195 | Apr. 19 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. YoungWoo Nam |
A family of finite-temperature electronic phase transitions in graphene multilayers
![]() |