Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
2016.08.29 21:05
장소 | E6-2(1st fl.), #1323 |
---|---|
일시 | Sep. 02(Fri) 2:30 PM |
연사 | Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST |
Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction
Sep. 02(Fri) 2:30 PM, E6-2(1st fl.), #1323
Dr. Yong-Hyun Kim,Graduate School of Nanoscience and Technology, KAIST
Abstract:
Heat, a measure of entropy, is largely perceived to be diffusive and transported incoherently by charge carriers (electrons and holes) and lattice vibrations (phonons) in a material. Because heat can be carried by many different (quasi-)particles, it is generally hard to spatially localize the transport of the thermal energy. Heat transport is thus considered to be a challenging means of the local probing of a material and of its electronic states. Recently, we have shown that coherent electron and heat transport through a point-like contact in the atomic force microscope set-up at the ultra-high vacuum condition produces an atomic Seebeck effect, which represents the novel imaging principle of surface wave functions with atomic resolution. The heat-based scanning Seebeck microscopy clearly contrasts to the vacuum tunneling-based scanning tunneling microscopy, a hitherto golden standard of imaging surface wave functions. We have found that the coherent transmission probabilities of electron and phonon across the tip-sample junction are equally important for the imaging capability of the scanning Seebeck microscope. Very recently, we have reported that abnormally enhanced nanoscale friction on ice-trapped graphene surface could be understood in terms of flexural phonon couplings between graphene and substrate (e.g. mica). Also, we have found that energetic tunneling electrons in scanning tunneling microscopy can cause chemical reactions at the single molecule level by locally exciting phonon modes of molecules (or nanoscale heating) under the tip through the inelastic electron-phonon scattering. In this talk, I will discuss how we theoretically explore nanoscale thermal physics including thermoelectric imaging, nanoscale friction, and single molecule chemical reaction, specifically in the setup of scanning probe microscopy.
Contact: Sung Jae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
185 | 2015/07/16, 4PM | E6-2, 1318 | Dr. Kyunghan Hong(MIT) | Next-generation ultrafast laser technology for nonlinear optics and strong-field physics |
184 | February 12(Web.) | E6-2, #5318 | Prof. Kunio Kaneta |
From inflation to new weak-scale
![]() |
183 | 2015/11/06, 4:30 PM | E6-2, #5318 | Dr. Youngkuk Kim (University of Pennsylvania) | Topological Dirac line nodes in centrosymmetric semimetals |
182 | 2015/10/23, 3PM | E6-2, #5318 | Dr. Helmut Soltner (Forschungszentrum Juelich) | Development of a Rogowski Coil as a new beam position monitor |
181 | 2015/08/03,10:30AM | E6-2, #1323 (Seminar Room) | Dr. Jonghee Yoo (Fermi National Accelerator Laboratory, USA ) | Axion Search |
180 | July 31(Wed.)/ 16:00 | E6-2, #1323 | Dr. Ivan Borzenets |
Features of ballistic superconducting graphene
![]() |
179 | Jun 24 (Mon) 11:00 | E6-2, #1323 | Dr. Henning Schomerus |
Topological photonic anomalies
![]() |
178 | July 25(Thur.),4:00PM | E6-2, #1323 | Prof.Bohm-Jung Yang |
Band topology of twisted bilayer graphene
![]() |
177 | 2015/12/11, 3:45PM | E6-2, #1323 | Dr. Ji Hun Sim (POSTECH) | Dynamical mean field theory studies on heavy fermion system |
176 | 2015/11/10, 4PM | E6-2, #1323 | Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) | Rapid heating of matter using high power lasers |
175 | 2015/11/19, 4PM | E6-2, #1323 | Dr. Daesu Lee (University of Wisconsin-Madison) | Emergent Collective Phenomena and Functions at Reduced Dimensions |
174 | 2015/12/11, 1:30PM | E6-2, #1323 | Dr. KwangYong Choi (Chung-Ang University) | Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9 |
173 | 2015/12/03, 4PM | E6-2, #1323 | Dr. Sang-Yun Lee (3rd institute of Physics, University of Stuttgart, Germany) | Hybrid solid state spin qubits in wide bandgap semiconductors |
172 | 2015/11/28, 10AM | E6-2, #1323 | Dr. Suyong Jung (Korea Research Institute of Standards and Science) | Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier |
171 | 2015/11/23, 1:30PM | E6-2, #1323 | Dr. Michael Park (Stanford University) | What's Beyond the Standard Model? Lessons from Run I and what might come in Run II |
170 | 2015/11/24, 4PM | E6-2, #1323 | Dr. Kab-Jin Kim (Institute for Chemical Research, Kyoto University, Japan) | Topology-based understanding of spin dynamics in inhomogeneously magnetized systems |
169 | 2016/1/11, 4PM | E6-2, #1323 | Dr. B.J.Kim (Max Planck Institute for Solid State Research) | Mott Physics in the Strong Spin-Orbit Coupling Regime |
168 | 2015/12/09, 2PM | E6-2, #1323 | Arjun G. Yodh (University of Pennsylvania) | SWELLABLE COLLOIDAL PARTICLES ARE SWELL |
167 | 2016/09/29-12/13 | E6-2, #1323 | Sangyoon Han 외 |
2016 Fall, Physics Seminar Serises
![]() |
166 | 2015/12/02, 4PM | E6-2, #1323 | Dr. Dae-Jeong Kim (Dept. of Physics and Astronomy, University of California, Irvine) | Samarium Hexaboride: Is it a Topological insulator? |