Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation
2018.06.12 14:21
장소 | E6-2, 2nd fl. #2502 |
---|---|
일시 | June 14 (THU), 10:00 AM |
연사 | Prof. Kenji Toyoda |
Physics Seminar
“Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”
Osaka University
Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes. They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.
In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.
Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)
Department of Physics, KAIST
댓글 0
번호 | 일시 | 장소 | 연사 | 제목 |
---|---|---|---|---|
공지 | 2019/09/18 - 12/5 | Seminar Room #1323 | Prof. David Schuster and etc. | Fall 2019: Physics Seminar Serises |
공지 | 2019/09/02 - 12/09 | Seminar Room 1501 | 이호성 박사 (한국표준과학연구원) and etc. | Fall 2019: Physics Colloquium |
185 | Oct. 12 (Fri.), 04:00 PM | E6-2. 1st fl. #1323 | Dr. HyungWoo Lee |
Direct observation of a two-dimensional hole gas at oxide interfaces
![]() |
184 | Oct. 12 (Fri.), 02:30 PM | E6-2. 1st fl. #1323 | Dr. Daniel Kyungdeock Park |
Quantum Advantage in Learning Parity with Noise
![]() |
183 | October 4 (Thu.), 16:00 PM | #1323, E6-2 | Prof. Soo Jin Kim |
Engineering light absorption in an ultrathin semiconductor metafilm
![]() |
182 | September 20 (Thu.), 16:00 | #1323, E6-2 | Prof. Joo-Hiuk Son |
Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA
![]() |
181 | September 5 (Wed.), 16:00 PM | #1323, E6-2 | Dr. Dirk Wulferding |
Shining a light on fractional excitations
![]() |
180 | Sep. 4 (Tue), 02:30 PM | E6-2. 2st fl. #2502 | Dr. Changmin Lee, MIT |
Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses
![]() |
179 | 2018년 9월 7일 (금), 3PM | 학술문화관 (E9), 2층 양승택 오디토리움 | Prof. Martin Head-Gordon, UC Berkeley |
Recent developments in density functional theory: From new functionals to the nature of the chemical bond
![]() |
178 | August 1, 2018 at 11:00AM | 양분순 빌딩 (E16-1) 207호 | 이대열 교수, 예일대 석좌교수 |
Future of AI: Is the brain a computer?
![]() |
177 | July 26, 2018 at 14:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6). | Manki Kim (Department of Physics, Cornell University) |
Inflation in String Theory and Backreaction
![]() |
176 | July 27, 2018 at 15:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6). | Dr. Hyejung Kim(Technische University Dresden) |
Muon g-2 in the 2HDM and MSSM: comprehensive numerical analysis and absolute maxima
![]() |
175 | July 13, 2018 at 14:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6). | Prof. Ian Lewis (The University of Kansas, Department of Physics & Astronomy) | Loop Induced Single Top Partner Production and Decay at the LHC |
174 | Thursday, July 12, 2018 at 17:00 | Room 5318, KAIST Natural Sciences Lecture Hall(E6) | Dr. Jae Hyeok Yoo (University of California, Santa Barbara, Department of Physics) | The MilliQan Experiment: Search for Milli-Charged Particles at the LHC |
173 | July 9 (Mon.), 14:00 PM | #1323, E6-2 | Prof. Cesar A. Hidalgo, MediaLab, MIT |
The principles of collective learning
![]() |
172 | June 27 (Wed.), 13:30 PM | #1323, E6-2 | Dr. Jung Sik Park |
Magnetic reversal of artificial spin ice
![]() |
171 | June 22 (Fri.), 04:00 PM | #1323, E6-2 | Dr. Daniel Sando |
Tuning functional properties of BiFeO3 films using strain and growth chemistry
![]() |
170 | July 2. 2018 (Monday) 3:00 PM | Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus | Dr. Peter Winter (Argonne National Laboratory) |
High Precision Magnetic Field Measurement for the Muon g-2 Experiment
![]() |
169 | 2018. 6. 22 10:00am ~ 11:50am | E6-6, Lecture Room 119 (1F) | Prof. Sang Bok Lee, Dept. of Chemistry and Biochemistry, Univ. of Maryland |
Success in Research Career
![]() |
168 | Jun. 18 (MON), 10:00 AM | E6-2. 2nd fl. #2502 | Dr. Thibault VOGT |
Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms
![]() |
» | June 14 (THU), 10:00 AM | E6-2, 2nd fl. #2502 | Prof. Kenji Toyoda |
Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation
![]() |
166 | Jun. 01 (Fri.), 11:00 AM | E6-2. 1st fl. #1323 | Dr. Seung Sae Hong |
Topological phases in low-dimensional quantum materials
![]() |