visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-12-14 16:00 
일시 Dec14(Thur), 4PM 
장소 CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus 
연사 Dr. Yong-Ho LEE (KRISS) 

물리학과 야니스 교수 연구실/액시온 및 극한상호작용 연구단 (CAPP/IBS) 입니다.

아래 세미나에 관심 있으신 연구자들의 참석을 요청드립니다.

CAPP seminars will be held. Anyone interested in this topic is warmly welcome.

 

Speaker: Dr. Yong-Ho LEE (KRISS)

Date: December 14, 2023 (Thursday) 

Time: 4:00 PM (KST)

Venue: CAPP Seminar Room C303, Creation Hall, KAIST Munji Campus

 

https://kaist.zoom.us/j/6108068959?pwd=TXV2OGlWdVRtcGhmNXVTRWlla2pHQT09

Meeting ID: 610 806 8959

Passcode: 131015

 

Topic: Superconducting qubits for large-scale quantum computers - Status of development in Korea and global trend

 

Abstract:

 

Quantum computing is attracting much attention recently due to the possibility of superior computing capacity compared with the classical computers. Quantum computing is based on the advantage of quantum mechanical phenomena in qubits; quantization of states, superposition of the two states, and entangement between qubits. Among the possible platforms for the qubits, superconducting qubit has several advantages; fast gate operation, relatively long coherence time, high gate fidelity, best scalability of the superconducting circuits using semiconductor fabrication technology, mature and stable precision microwave and cryogenic technology, and easy-to-operate and reliable hardware. Therefore superconducting qubit is one of the most widely studied platform worldwide.

 

In the superconducting qubit, we control the two lowest energy states in the superconducting circuits, and its energy difference is equivalent to about 250 mK. Therefore we need to protect the qubits well from the environment thermal and electromagnetic interferences. And accurate and precise control of microwave pulses and quantum-limited measurement of microwave signals are needed for high-fidelity operation of the qubit system.

 

 

In the talk, I will introduce the basic concept of the superconductivity-based quantum computing, design and fabrication of superconducitng qubits, microwave control and measurement technology, and cryogenic and microwave components of the quantum computing system. And, the ongoing project for developing superconducting quantum computing system in Korea, and global trend for higher-performance quantum computing will be introduced.

 

Seminar Poster_IBS Joint Colloquium_20231214.jpg

 

번호 날짜 장소 제목
413 2022-10-26 10:00  E6-2 #2502  Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
412 2022-10-24 16:00  E6 #1501(공동강의실)  Physics Colloquim(Fall 2022) file
411 2022-10-13 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
410 2022-10-07 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
409 2022-10-06 13:00  E6 #1323  Counting States with Global Symmetry
408 2022-10-04 16:00  E6 #2501  Distinguishing 6d (1, 0) SCFTs
407 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
406 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
405 2022-09-29 16:00  E6-2 #1323  (광학분야 세미나) Ultrafast THz Field-Induced Nonlinear Optics
404 2022-09-23 11:00  E6-2 #1323  [Update 세미나 영상] (응집물리 세미나) Steady Floquet-Andreev states in graphene Josephson junctions file
403 2022-09-22 16:00  E6-2 #1323  (광학분야 세미나) Quasi-particle-like optical vortices in magnetic materials
402 2022-09-22 11:00  E6-1 #1323  2022 가을학기 응집물리 및 광학 세미나 전체 일정 file
401 2022-09-21 16:00  College of Natural Science E6-2, Rm. 1323  Materials and Device Nanofabrication of Optical Metasurfaces file
400 2022-09-21 10:30  E6-1 #1501  [Update 세미나 영상] Distinguished Lecture 'The Magic of Moiré Quantum Matter' Prof. Pablo Jarillo-Herrero(Department of Physics, MIT) file
399 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
398 2022-08-18 10:00  E6-1 #1323  Disorder-driven phase transition in the second-order non-Hermitian skin effect
397 2022-08-17 11:00  E6-6 #118호  Robust Hamiltonian Engineering of Large Quantum Systems (큰 양자시스템의 견고한 해밀토니안 엔지니어링)
396 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
395 2022-08-12 10:00  E6-1 #1323  Twisted Bilayer Magnets file
394 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file