visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-18 10:30 
연사  
장소 #5318(5th fl.) 

Non-equilibrium many-body spin dynamics in diamond

 

Dr. 원, Havard University

Nov. 18th (Fri) 10:30 a.m., #5318(5th fl.)

 

 

Abstract:

In this talk, we will discuss two recent developments in non-equilibrium quantum dynamics of strongly interacting many-body systems: I. critically slow thermalization in a disordered dipolar spin ensemble [1] and II. the observation of discrete time crystalline order [2]. Both of these experiments were enabled by a high density ensemble of nitrogen-vacancy (NV) color centers in diamond [3]. As a mixture of theory and experiments, the talk will be self-contained and pedagogical, reviewing some of basic concepts in many-body localization, Floquet time-crystal, spin properties of NV centers and experimental techniques to manipulate and engineer the dynamics.

Part I:

Statistical mechanics underlies our understanding of macroscopic quantum systems. It is based on the assumption that out-of-equilibrium systems rapidly approach their equilibrium states, forgetting any information about their microscopic initial conditions. This fundamental paradigm is challenged by disordered systems, in which a slowdown or even absence of thermalization is expected. By controlling the spin states of the ~10^6 NV centers, we observe slow, sub-exponential thermalization consistent with power laws that exhibit disorder-dependent exponents; this behavior is modified at late times owing to many-body interactions. These observations are quantitatively explained by a resonance counting theory that incorporates the effects of both disorder and interactions

Part II:

The interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic ``time-crystalline'' phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. We report the experimental observation of such discrete time-crystalline order and the observation of long-lived temporal correlations at integer multiples of the fundamental driving period. We experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. We provide a theoretical description of approximate Floquet eigenstates of the system based on product state ansatz and predict the phase boundary, which is in qualitative agreement with our observations.

 

[1] G. Kucsko et al, arXiv:1609.08216

[2] S. Choi et al, arXiv:1610.08057

[3] J. Choi et al, arXiv:1608.05471

 

Contact: Eun-Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

 

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
505 2022-01-26 13:00    An Introduction to Cohomology groups file
504 2018-10-12 16:00    Direct observation of a two-dimensional hole gas at oxide interfaces file
503 2022-11-18 14:30    Kondo cloud condensation in a highly-doped semiconductor metal file
502 2025-05-01 16:00  Dr. Inwook Kim (Lawrence Livermore National Laboratory)  BSM Physics Search with Quantum Sensors file
501 2018-12-26 16:00    Brane-like defect in 3D toric code file
500 2019-07-31 16:00    Features of ballistic superconducting graphene file
499 2018-07-12 17:00    The MilliQan Experiment: Search for Milli-Charged Particles at the LHC
498 2016-12-09 13:30    Entanglement area law in strongly-correlated systems
497 2023-11-23 16:00    Deciphering the Enigma of Quantum Materials by X-ray Scattering and Spectroscopy
496 2019-10-16 16:00    Emergent black holes and monopoles from quantum fields file
495 2022-07-14 13:30    Electronic structure and anomalous transport properties of topological materials by first principle calculation
494 2016-11-24 16:00    Harmonic oscillator physics with single atoms in a state-selective optical potential
493 2015-09-07 15:00    Advanced Optical Materials and Devices at NRL
492 2021-05-14 16:00    Spatial and temporal separation of environmental dephasing sources from solid-state quantum emitters file
491 2016-04-12 16:00    Confinement of Superconducting Vortices in Magnetic Force Microscopy
490 2017-04-28 14:30    Hot electron generation at surfaces and its impact to catalysis and renewable energy conversion
489 2015-12-11 15:45    Dynamical mean field theory studies on heavy fermion system
488 2023-10-19 11:00    Emergent functionalities of iridium oxide films with different growth orientation file
487 2023-06-26 11:00    Quantum computing on magnetic racetracks with flying domain wall qubits
486 2019-04-19 11:00    First-principles studies of semiconductors for solar cell applications file