visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-12-14 15:00 
일시 Thursday, December 14, 2017 at 3:00 pm 
장소 Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus 
연사 Chunglee Kim (KASI) 

Since 2015, the advanced LIGO (Laser Interferometer Gravitational-wave Observatory) in USA and the advanced Virgo in Europe have been successfully discovering black holes and neutron stars via gravitational waves (GWs) in cosmological distances. After the original discovery of a black hole binary (BBH, GW150914) by LIGO, more BBHs are confirmed. The observed waveform of GWs from BBH coalescences (inspiral-merger-ringdown phases) are well described by Einstein's general relativity as well as approximations. LIGO-Virgo's another major breakthrough was thr discovery of GW170817. It is the first extragalactic neutron star - neutron star binary (NS-NS). It turned out that GW170817 is a progenitor of GRB170817A (independently discovered by the Fermi space telescope). Within 24 hrs since the discovery of GW170817, extensive international observation campaign were made using electromagnetic waves (from gamma rays to radio) as well as neutrinos. GW170817 will be recorded as one of the most successful global multi-messenger effort. With the discoveries of BBHs and NS-NS by LIGO and Virgo, GW astronomy has truly begun. The next decades will be a golden era for stellar astrophysics and many surprises are expected. Furthermore, cosmology with GWs seems also promising. Distance measure by GWs for GW170817 (at 40 Mpc) is already powerful enough to put constraints on the Hubble constant. In future, there will be a global network of GW observatories on Earth and in space and broader frequency ranges will be accessible in GWs. In this talk, I will present the highlights of GW astronomy and astrophysics based the LIGO-Virgo observations so far. I will also discuss the prospects of multi-messenger astronomy.

번호 날짜 장소 제목
433 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
432 2016-11-01 14:30  Seminar Room #1323(E6-2)  Search for dark sector particles in the B-factory experiments
431 2016-11-04 13:30  E6-2. #1323(1st fl.)  Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications
430 2016-11-04 15:00  E6-2. #1323(1st fl.)  Quantum information experiments using few electron spins in semiconductors
429 2016-11-1 10:30  #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
428 2016-11-10 16:00  E6-2. #1323(1st fl.)  Low Dimensional Active Plasmonics and Electron Optics in Graphene
427 2016-11-11 13:30  #1323(E6-2. 1st fl.)  Bandgap Engineering of Black Phosphorus
426 2016-11-11 16:00  #1323(E6-2. 1st fl.)  Dirac fermions in condensed matters
425 2016-11-16 16:00  #1323(E6-2. 1st fl.)  Realizing Haldane Model in Fe-based Honeycomb Ferromagnetic Insulators
424 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
423 2016-11-24 16:00  #1323(E6-2. 1st fl.)  Harmonic oscillator physics with single atoms in a state-selective optical potential
422 2016-11-29 16:00  #1323(E6-2. 1st fl.)  Symmetry Protected Kondo Metals and Their Phase Transitions
421 2016-12-09 13:30  #1323(E6-2. 1st fl.)  Entanglement area law in strongly-correlated systems
420 2016-12-09 16:00  #1323(E6-2. 1st fl.  Shift Charge and Spin Photocurrents in Dirac Surface States of Topological Insulator
419 2016-12-12 13:30  1:30p.m. #1323(E6-2. 1st fl.)  “Possible symmetry in the phase diagrams of electron- & hole-doped cuprate high-Tc superconductors”
418 2016-12-8 16:00  #1323(E6-2. 1st fl.)  Dynamical Resonance between Two Optical Cavities via Optomechanical Oscillator
417 2017-01-09 16:00  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Topological Defects and Phase Transitions" file
416 2017-02-01 14:00  #1323(E6-2. 1st fl.)  Quantum electron optics using flying electrons
415 2017-03-02 16:00  #1323(E6-2. 1st fl.)  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
414 2017-03-06 16:00  Seminar Room 1501  Spring 2017: Physics Colloquium file