visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 #1323 (E6-2. 1st fl.) 
일시 Sep. 26 (Tue.), 11AM 
연사 Dr. Yukiaki Ishida / ISSP, University of Tokyo 

Time-resolved ARPES study of Dirac and topological materials

 Dr. Yukiaki Ishida / ISSP, University of Tokyo

 Sep. 26 (Tue.), 11AM

#1323 (E6-2. 1st fl.)

 

 

Time- and angle-resolved photoemission spectroscopy (TARPES) has become a powerful tool to investigate the non-equilibrated states and dynamics of matter from an electronic structural point of view. Being a surface sensitive method, TARPES has also opened pathways to explore the ultrafast phenomena occurring on the edge of matter. We present investigations done on Dirac and topological materials by using a TARPES apparatus that achieves the energy resolution of 10.5 meV and high stability [1].

       1. Classification of the topological phase of matter:

In 2008, it was demonstrated that there are two classes in non-magnetic insulators. A topological twist can be defined for the bulk band structure, and those that have the twist belong to the topologically-nontrivial class. The effect of the twist appears on the edge: On surface of topological insulators (TIs), novel Dirac-type dispersion is formed. Thus, the classification can be done by investigating whether the surface Dirac dispersion exists or not. 

2. Functioning surface of topological insulators by light:

We discovered that surface photo-voltage (SPV) can emerge on TIs when the bulk is sufficiently insulating [5]. That is, TIs now meet the well-known opto-electronic function of semiconductors. We discuss that the SPV effect can be utilized to generate spin-polarized current on TI surface, and present the ongoing research towards this end. 

3. Ultrafast dynamics of Dirac electrons:

Massless Dirac fermions have the ability to absorb light of whatever color. Thus, Dirac fermions are prospective in opto-electronics. In fact, ultrashort pulses of any color can be created by using TIs and graphitic materials. Broad-band lasing may also be realized if a population inversion can be formed across the Dirac point. Firm understanding of the Dirac electron dynamics thus becomes of paramount importance. We show that an inverted population is realized in the surface Dirac band of a TI Sb2Te3 [6]. Dynamics being either within or beyond a simple two-temperature model scheme is observed in layered Dirac semimetals such as graphite and SrMnBi2 [7].

[1] Y. Ishida et al., Rev. Sci. Instrum. 85, 123904 (2014); Y. Ishida et al., Sci. Rep. 6, 18747 (2016). 

[3] P. Zhang et al., Phys. Rev. Lett. 118, 046802 (2017). 

[3] S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014). 

[4] I. Belopolski et al., Nature Commun. 7, 13643 (2016). 

[5] Y. Ishida et al., Sci. Rep. 5, 8160 (2015); M. Neupane et al., Phys. Rev. Lett. 115, 116801 (2015).

[6] S. Zhu et al., Sci. Rep. 5, 13213 (2015). 

[7] Y. Ishida et al., Sci. Rep. 1, 64 (2011); Y. Ishida et al., Phys. Rev. B 93, 100302(R) (2016). 

 

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
196 Nov. 9 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Pilkyung Moon  Moiré superlattices – from twisted bilayer graphene to quasicrystal file
195 November 1 (Thu.), 16:00 PM  #1323, E6-2  Dr. KyeoReh Lee  Direct holography from a single snapshot file
194 October 26 (Fri.), 4:00 PM  #1323, E6-2  Dr. Kyusung Hwang  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
193 October 25 (Thu.), 4:00 PM  #1323, E6-2  Dr. Gang Li  Abelian and non-Abelian dark photons file
192 October 24 (Wed.), 10:30 AM  E6-1, Lecture Room 1501(1F)  Prof. Kerry J. Vahala  Photonic integration of next-generation clocks and Hertz-absolute-accuarcy optical frequenncy synthesizers file
191 October 18 (Thu.), 16:00 PM  #1323, E6-2  Prof. Jongseok Lee  Applications of nonlinear optics for condensed matter researches file
190 October 19 (Fri.), 10:00 AM  #1323, E6-2  Dr. Jongsoo Yoo  Energy conversion processes during magnetic reconnection in a laboratory plasma file
189 October 18 (Thu.), 10:00 AM  #1323, E6-2  Dr. Duyoung Min  Understanding membrane protein folding using single-molecule force techniques file
188 October 16 (Tue.), 10:00 AM  #1323, E6-2  Dr. Won-Ki Cho  Capturing protein cluster dynamics and gene expression output in live cells file
187 October 15 (Mon.), 16:00 PM  #1323, E6-2  Dr. Yongjoo Baek  Universal properties of macroscopic current-carrying systems file
186 October 11 (Thu.), 16:00 PM  #1323, E6-2  Prof. Joung-Real Ahn  Dirac electrons in a graphene quasicrystal file
185 Oct. 12 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. HyungWoo Lee  Direct observation of a two-dimensional hole gas at oxide interfaces file
184 Oct. 12 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Daniel Kyungdeock Park  Quantum Advantage in Learning Parity with Noise file
183 October 4 (Thu.), 16:00 PM  #1323, E6-2  Prof. Soo Jin Kim  Engineering light absorption in an ultrathin semiconductor metafilm file
182 September 20 (Thu.), 16:00  #1323, E6-2  Prof. Joo-Hiuk Son  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
181 September 5 (Wed.), 16:00 PM  #1323, E6-2  Dr. Dirk Wulferding  Shining a light on fractional excitations file
180 Sep. 4 (Tue), 02:30 PM  E6-2. 2st fl. #2502  Dr. Changmin Lee, MIT  Ultrafast time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme ultraviolet laser pulses file
179 2018년 9월 7일 (금), 3PM  학술문화관 (E9), 2층 양승택 오디토리움  Prof. Martin Head-Gordon, UC Berkeley  Recent developments in density functional theory: From new functionals to the nature of the chemical bond file
178 August 1, 2018 at 11:00AM  양분순 빌딩 (E16-1) 207호  이대열 교수, 예일대 석좌교수  Future of AI: Is the brain a computer? file
177 July 26, 2018 at 14:00  Room 5318, KAIST Natural Sciences Lecture Hall(E6).  Manki Kim (Department of Physics, Cornell University)  Inflation in String Theory and Backreaction file