• HOME
  • >
  • 소식
  • >
  • 세미나
장소 #5318(E6-2. 5th fl.) 
일시 AUG. 31 (Thu.), 2 PM 
연사 Prof. Hiroaki Ishizuka (The University of Tokyo) 

“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”

Prof. Hiroaki Ishizuka (The University of Tokyo)

AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)


Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms. 

To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].

In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].


[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981). 

[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).

[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).

[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).

[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).

[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).

[8] Q. Ma et al., preprint (arXiv: 1705.00690).


Contact: Eun Gook Moon, Physics Dept., (

20170831_Hiroaki Ishizuka.pdf

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
69 May 13 (Fri.) 4 PM  E6. #1501(1st fl.)  Dr. Hosub Jin, Dept. of Physics, UNIST  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
68 May 11 (Wed.), 4 PM  E6-2. #1323(1st fl.)  Dr. Bumjoon Kim, Max Planck Institute for Solid State Research  The quest for novel high-temperature superconductors---Prospects and progress in iridates
67 Apr. 28 (Thu.) 3PM  #2501(E6-2. 2nd fl.)  Dr. Chang Hee Sohn, SEOUL NATIONAL UNIVERSITY  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
66 April 26 (Tue), 4PM  #1323(1st Floor. E6-2)  Dr. Myung-Ho Bae, Korea Research Institute of Standards and Science  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
65 Apr. 19(Tue.), 2PM  #1323(E6-2. 1st fl.)  Prof. Mark Koepke, Department of Physics and Astronomy, West Virginia University, USA  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
64 4월 18일(월), 15:30~  KI빌딩(E4), 강의실 B501 (5F)  Prof. Robert A. DiStasio Jr. (Cornell University)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
63 Apr. 12 (Tue.), 4 PM  E6-2. 1st fl. #1323  Dr. Jeehoon Kim, POSTECH  Confinement of Superconducting Vortices in Magnetic Force Microscopy
62 Apr. 08 (Fri.), 4:00 PM  E6-2. 5st fl. #1501  Dr. Changyoung Kim, SEOUL NATIONAL UNIV.  Spectroscopic studies of iron-based superconductors : what have we learned?
61 Apr. 08 (Fri.), 13:30 PM  E6-2. 1st fl. #1501  Dr. Yunkyu Bang, Chonnam National Univ.  Theoretical Overview of Iron-based superconductors and its future
60 Apr. 5 (Tue.), 4PM  E6-2. 1st fl. #1322  Dr. Ara Go, Columbia University  A new impurity solver for multi-orbital systems: adaptive truncation of the Hilbert space
59 Apr. 01 (Fri.) 4:15 PM  E6-2. 1st fl. #1501  Dr. JONG SOO LIM, KIAS  Cotunneling drag effect in Coulomb-coupled quantum dots
58 Apr. 01 (Fri.) 2:30 PM  E6-2. 1st fl. #1501  Dr. KICHEON KANG, Chonnam National University  Interference of single charged particles without a loop and dynamic nonlocality
57 April 6, 2016 (Wed), 3:30 PM  E6-2, RM #1323  Dr. Andrei Matlashov (Los Alamos National Laboratory)  Superconducting Quantum Interference Devices for Precision Detection
56 April 4, 2016 (Mon) - April 8, 2016 (Fri)  KAIST Natural Science Building (E6-2), RM #4314  Dr. Fritz Caspers (CERN)  Radio frequency engineering
55 2016/03/11-06/09  E6-2, 1501 외  박권(KAIS) 외  Physics Seminar Serises : 2016 Spring file
54 2016/03/11 4 PM  E6-2. 1st fl. #1501  Dr. Tae-Hwan KIM (POSTECH)  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
53 2016/03/11 1:30 PM  E6-2. 1st fl. #1501  Dr. Kwon Park  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
52 2016/03/07-06/13  E6, 1501  Prof. David Helfman(KAIST) 외  Physics Colloquium : 2016 Spring file
51 2016/1/26, 2PM  E6-2, #1323  Dr. Sergei V. Kalinin (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory)  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
50 2016/1/11, 4PM  E6-2, #1323  Dr. B.J.Kim (Max Planck Institute for Solid State Research)  Mott Physics in the Strong Spin-Orbit Coupling Regime