visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 #1323(E6-2. 1st fl.) 
일시 Feb. 1 (Wed.), 2p.m. 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
공지 2019/03/21 - 5/30  Seminar Room #1323  Dr. Hyangtag Lim (KIST) and etc.  Spring 2019: Physics Seminar Serises
공지 2019/02/25 - 06/03  Seminar Room 1501  양용수 교수 (Prof. Yongsoo Yang, KAIST) and etc.  Spring 2019: Physics Colloquium
180 May 16, 2016 (Mon) 4PM  #1323(E6-2, 1st Fl.)  Dr. Daniel Bowring , Fermi National Accelerator Laboratory  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
179 May 13 (Fri.), 1:30 PM  E6. #1501(1st fl.)  Dr. Young-Woo Son, Dept. of Physics, KIAS  Aperiodic crystals in low dimensions
178 May 13 (Fri.) 4 PM  E6. #1501(1st fl.)  Dr. Hosub Jin, Dept. of Physics, UNIST  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
177 May 11 (Wed.), 4 PM  E6-2. #1323(1st fl.)  Dr. Bumjoon Kim, Max Planck Institute for Solid State Research  The quest for novel high-temperature superconductors---Prospects and progress in iridates
176 May 1 (Wed), 4:00 PM  #1323, E6-2  Dr. Sungkyun Choi  Raman and x-ray scattering study on correlated electron systems: two case examples file
175 Mar. 2nd (Thu), 4:00 p.m  #1323(E6-2. 1st fl.)  Dr. Jonathan Denlinger, Lawrence Berkeley National Lab  “Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”
174 Mar. 29 (Fri.), 04:00 PM  E6-2. 1st fl. #1323  Dr. Taeyoung Choi  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
173 Mar. 29 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. Seung Hyub Baek  Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
172 MAR. 26 (TUE), 0300 PM  E6-2. 2st fl. #2501  Prof. Jung Hoon Han  Consideration of thermal Hall effect in frustrated and un-frustrated quantum magnets file
171 Mar. 24 (Fri.), 4:00 PM  #1323 (1st fl. E6-2)  Dr. SangWook Lee  Graphene based nano electronics and nano electromechanics; focusing on precise control of nano structures for studying accurate physical properties
170 Mar. 24 (Fri.), 2:30 PM  #1323 (1st fl. E6-2).  Dr. MahnSoo Choi  Topological Dynamics
169 Mar. 16 (Fri.), 04:0 PM  E6-2. 1st fl. #1323  Dr. YoungDuck Kim  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
168 Mar. 16 (Fri.), 02:30 PM  E6-2. 1st fl. #1323  Dr. JinHee Kim  산화물 다층박막에서의 다양한 물리현상 file
167 June 4 (Tue.), 5:00 PM  #1323, E6-2  Prof. Minsu Kim  Stochastic nature of bacterial eradication using antibiotics file
166 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
165 June 27 (Wed.), 13:30 PM  #1323, E6-2  Dr. Jung Sik Park  Magnetic reversal of artificial spin ice file
164 June 27 (Thu), 2:00 PM  #2502, E6-2  Hyun-Yong Lee  Gapless Kitaev Spin Liquid to Loop and String Gases file
163 June 22 (Fri.), 04:00 PM  #1323, E6-2  Dr. Daniel Sando  Tuning functional properties of BiFeO3 films using strain and growth chemistry file
162 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
161 June 14, 2016 (Tue) 3PM  #1323 (E6-2 1st fl.)  Prof. Seungyong Hahn, Florida State University  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets