visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 #1323(E6-2. 1st fl.) 
일시 Feb. 1 (Wed.), 2p.m. 
연사 Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
249 July 31(Wed.)/ 16:00  E6-2, #1323  Dr. Ivan Borzenets  Features of ballistic superconducting graphene file
248 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
247 July 21 - August 2  E6-2,# 5318  Junmou Chen/Thomas Flacke/Kaoru Hagiwara/Junichi Kanzaki/Chris Kelso/Jeong Han Kim/Kyoungchul Kong/Gabriel Lee/Hye-Sung Lee/Ian Lewis  Challenges and Opportunities in Theoretical Particle Physics 2019 file
246 July 25(Thur.),4:00PM  E6-2, #1323  Prof.Bohm-Jung Yang  Band topology of twisted bilayer graphene file
245 2019. 7. 16(화)  Rm. 1323 (E6-2)  Prof. Sidney Nagel  2019 Physics Distinguished Lecture file
244 July 8(Mon), 14:00  E6, #1322  T. L. M. Guedes (Univ. of Konstanz)  Ultrabroadband squeezed pulses and their relation to relativity file
243 Jun 28, 14:00  E6-2, #1322  Dr. Bongjae Kim, Dr. Sooran Kim, Dr. Jeongwoon Hwang  1st Research-exchange meeting of computational material physics file
242 June 27 (Thu), 2:00 PM  #2502, E6-2  Hyun-Yong Lee  Gapless Kitaev Spin Liquid to Loop and String Gases file
241 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
240 Jun 24 (Mon) 11:00  E6-2, #1323  Dr. Henning Schomerus  Topological photonic anomalies file
239 Jul 3rd, 2019 (Wed)  E6-2, 2501  Kyung Soo Choi  Many-body quantum electrodynamis (QED) with atoms and photons: A new platform for quantum optics" file
238 July 10 (Wed.), 04:00 PM-  Academic Cltural Complex (E9) 5층 스카이라운지  Prof. Sidney Nagel/Young-Kee Kim  Public Lectures file
237 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
236 3 PM, 12 Jun (Wed), 2019  Rm# 1323, E6-2  Dr. Minyoung You  The relation between free and interacting fermionic SPT phases file
235 June 4 (Tue.), 5:00 PM  #1323, E6-2  Prof. Minsu Kim  Stochastic nature of bacterial eradication using antibiotics file
234 May 30 (Thu.), 16:00 PM  #1323, E6-2  Prof. Chang-Hee Cho  Tuning the excitonic properties of semiconductors with light-matter interactions file
233 May 24 (Fri.), 16:00 PM  #1323, E6-2  Prof. Soonjae Moon  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
232 May 31 (Fri.), 11:00 AM  #1323, E6-2  Prof. Guido Burkard  Cavity QED with Spin Qubits file
231 May 21 (Tue.), 4:00 PM  #5318, E6-2  임준원 박사  Classification of flat bands according to the band-crossing singularity of Bloch wave functions file
230 May 9 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kwang Geol Lee  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file