visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 E6-2. 1st fl. #1323 
일시 Oct. 18 (Tue.), 3PM 
연사 Dr. JunHo Suh, Korea Research Institute of Standards and Science 

“Hybrid quantum systems with mechanical oscillators”

 

Dr. JunHo Suh, Korea Research Institute of Standards and Science
Oct. 18 (Tue.), 3PM, E6-2. 1st fl. #1323

 

Abstract:

Quantum machines are actively pursued to harness quantum coherence and entanglement as new resources for information processing and precision sensing. Among those activities, hybrid quantum systems are recognized as a promising platform for building multi-functional quantum machines by connecting quantum states in different physical domains, and mechanical oscillators are accepted as important components in the quantum hybrids[1]. In this talk, I review recent examples of hybrid quantum systems involving mechanical oscillators strongly coupled to electrons and photons. In the first part, a quantum electro-mechanical system is introduced. A cooper-pair box qubit is electrostatically coupled to a nanomechanical oscillator. A dispersive measurement of qubit states is achievable through high-quality read-out of nanomechanical motion, which also maintains qubit coherence proved via microwave spectroscopy and Landau-Zener interference. In the second part, mechanical oscillators coupled to microwave photons, or "quantum opto-mechanical systems", are described, where radiation pressure mediates the interaction between photons and the mechanical oscillator.  Photons act as a probe for mechanical motion in this case, and a fundamental limit in measurement sensitivity arises due to Heisenberg's uncertainty principle, as known as quantum standard limit(SQL). By carefully measuring mechanical motion in quadratures, we identify the fundamental back-action from photons which mandates SQL, and also demonstrate a novel scheme known as quantum non-demolition measurement (QND) which allows a precise measurement without back-action in one quadrature of motion[3]. When the coupling between the microwave photons and mechanical motion is strong enough, the back-action from photons start modifying quantum noise in mechanical oscillators and produced mechanical quantum squeezed states[4,5]. Finally, it is expected that one could approach ultra-strong coupling regime as photon-mechanical oscillator coupling strength increases, where single photon coupled to mechanical motion dominates the hybrid system. Mechanical states in the ultra-strong coupling limit deviate from well-known number states which could open a new paradigm for controlling mechanical quantum states[6]. A quantum dot system embedded in a nanowire is proposed to be a candidate to reach this interesting regime, and our recent progress toward this direction is dissussed.

 

[1] Kurizki et.al., PNAS 112, 3866-3873 (2015).
[2] LaHaye et.al., Nature 459, 960-964 (2009).
[3] Suh et.al., Science 344, 1262-1265 (2014).
[4] Wollman et.al., Science 349, 952-955 (2015).
[5] Lei et.al., PRL 117, 100801 (2016).
[6] Nation et.al., PRA 93, 022510 (2016).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)
Center for Quantum Coherence in Condensed Matter, KAIST

번호 일시 장소 연사 제목
공지 2019/09/18 - 12/5  Seminar Room #1323  Prof. David Schuster and etc.  Fall 2019: Physics Seminar Serises
공지 2019/09/02 - 12/09  Seminar Room 1501  이호성 박사 (한국표준과학연구원) and etc.  Fall 2019: Physics Colloquium
235 May 24 (Fri.), 16:00 PM  #1323, E6-2  Prof. Soonjae Moon  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
234 May 30 (Thu.), 16:00 PM  #1323, E6-2  Prof. Chang-Hee Cho  Tuning the excitonic properties of semiconductors with light-matter interactions file
233 November 14 (Thu.), 16:00 PM  #1323, E6-2  Prof. Ji-Hun Kang  Semi-classical model of polariton propagation file
232 November 28 (Thu.), 16:00 PM  #1323, E6-2  Prof. Kyung Taec Kim  Generation of coherent EUV emissions using ultrashort laser pulses file
231 December 3 (Tue.), 4:00 PM  #1323, E6-2  Dr. Jong Mok Ok  Toward Quantum Materials with Correlated Oxides file
230 December 5 (Thu.), 16:00 PM  #1323, E6-2  Prof. Soon-Hong Kwon  Subwavelenth Photonic Devices: From Single Photon Sources to Solar Cell file
229 December 13 (Fri.), 1:30-4:30 PM  #1323, E6-2    Biophysics Mini-symposium at KAIST file
228 December 18 (Tue.), 4:00 PM  #1323, E6-2  Prof. Shin-ichi Uchida  Road to Higher Tc Superconductivity file
227 June 17 (Mon.), 10:30 AM  #1323, E6-2  Dr. See-Hun Yang  Chiral Spintronics file
226 June 28 (Fri.), 13:30 PM  #1323, E6-2  Dr. Yusuke Kozuka  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
225 July 30 (Tue), 4:00 PM  #1323, E6-2  Dr. Mingu Kang  Dirac fermions and flat bands in correlated kagome metals file
224 2019. 8. 22 4PM & 8. 23 3PM  #1323, E6-2  Prof. Andrew N Cleland  Physics and Applications in Nanoelectronics and Nonomechanics file
223 September 18(Wed.), 16:00PM  #1323, E6-2  Prof.David Schuster  Exploring Synthetic Quantum Matter in Superconducting Circuits file
222 September 26 (Thu.), 16:00 PM  #1323, E6-2  Han Seb Moon  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
221 October 15 (Tue.), 16:00 PM  #1323, E6-2  Prof. Pilkyung Moon  Moiré superlattices and graphene quasicrystal file
220 October 17 (Thu.), 16:00 PM  #1323, E6-2  Prof. Namkyoo Park  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
219 Oct. 25 (Fri), 15:00 ~  #1323, E6-2  Daesu Lee,Junwoo Son,MyungJoon Han ,Siheon Ryee,Eun-Gook Moon  Physics Seminar file
218 October 29 (Tue.), 14:30 PM  #1323, E6-2  Prof. Jörg Wrachtrup  Quantum sensing file
217 November 5 (Tue.), 4:00 PM  #1323, E6-2  Dr. Shik Shin  Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
216 November 7 (Thu.), 16:00 PM  #1323, E6-2  Prof. Je-Hyung Kim  Integrated quantum photonics with solid-state quantum emitters file