visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
장소 #1323 (E6-2 1st fl.) 
일시 June 14, 2016 (Tue) 3PM 
연사 Prof. Seungyong Hahn, Florida State University 

No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets

 

June 14, 2016 (Tue) 3PM , #1323 (E6-2 1st fl.)
Prof. Seungyong Hahn, Florida State University


Abstract:


Firstly introduced in 2010, the No-Insulation (NI) high temperature superconductor (HTS) winding technique is expected to provide a practical solution for protection of HTS magnets, one of the most critical challenges in high-field (>20-T) HTS magnets. The key idea is to eliminate turn-to-turn insulation within an HTS coil and, in a quench event, current can be automatically diverted to the adjacent turns through turn-to-turn shorts. As a result, an NI magnet can be designed at a substantially higher operating current density than that of its insulated counterpart, thus the magnet becomes extremely compact, yet “self-protecting.” To date, over 100 NI HTS coils have been constructed and tested to have successfully demonstrated the self-protecting feature of NI coils. In a magnet level, a total of 9 NI magnets have been designed, constructed, and tested, including the recent 26-T 35-mm all-REBCO magnet that was designed by Hahn and constructed by SuNAM. To date, all of NI magnets survived after multiple consecutive quenches at their nominal operating temperature ranged 4.2 – 20 K. An NI magnet, however, has a major drawback of “charging delay” due to its turn-to-turn shorts. Several variations of the NI technique, including the Partial-No-Insulation (PNI) and the Metallic-Cladding-Insulation (MCI), are proposed by several groups, with which 5 – 50 times reduced charging delays were reported than those of their NI counterparts. This presentation provides a summary of the NI magnet technologies, relevant to design and construction of axion detection magnets, for the past 5 years, which include: 1) recent quench test results of two all-REBCO magnets, 26-T/35-mm and 7-T/78-mm; 2) a 9 T REBCO insert that reached a record high field of 40 T in a background field of 31 T; 3) “electromagnetic quench propagation” as the self-protecting mechanism of an NI magnet; 4) potential of the NI technique for the next-generation ultra high field magnets; 5) major challenges and potential pitfalls. 


Contact: CAPP Administration Office(T.8166)

번호 일시 장소 연사 제목
공지 Sep.22 2022  E6-1 #1323    2022 가을학기 응집물리 및 광학 세미나 전체 일정
341 2016/09/05-12/12 4PM  Natual Scien Bldg.(E6)m #1501  Yeong Kwan Kim 외  Physics Colloquium : 2016 Fall file
340 May 19, 2016 (Thur.) 3PM  May 19, 2016 (Thur.) 3PM,  Dr. Michael Betz, CERN  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
339 2017.1.9(Mon), 4PM  Lecture Hall, College of Natural Sciences [#1501,E6-2]  Prof. John Michael Kosterlitz, Brown University  Topological Defects and Phase Transitions" file
338 4월 18일(월), 15:30~  KI빌딩(E4), 강의실 B501 (5F)  Prof. Robert A. DiStasio Jr. (Cornell University)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
337 2014/05/28, PM5  KI Building, Matrix Hall  이웅범 대표이사(LG이노텍)  부품소재산업이 미래다
336 Aug. 9 (Tue), 14:00 PM  KI building (E4), Lecture Room Red (B501)  Dr. YoungChan Kim (Quantum Biophotonics Group, University of Surrey, UK)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
335 Jan. 18(Tue), 2pm-3pm  KI bldg. 5th fl. Room B501 & Zoom  YoungJu Jo (Stanford University)  Data-driven interrogation of biological dynamics: from subcellular interactions to neuronal networks in vivo file
334 Aug. 4, 2016 (Thu.), 2:30 pm  KAIST Natural Science Building (E6-5), EDU 3.0 Room(1st fl.)  Prof. Argyris Nicolaidis  Relational Logic (with applications to Quantum Mechanics, String Theory, Cosmology, Neutrino Oscillations, Statistical Mechanics)
333 April 4, 2016 (Mon) - April 8, 2016 (Fri)  KAIST Natural Science Building (E6-2), RM #4314  Dr. Fritz Caspers (CERN)  Radio frequency engineering
332 2015/10/14, 6PM  KAIST Munji Campus Supex Hall  이창환 교수 (부산대학교 물리학과)  인터스텔라 영화 속의 물리 file
331 #1323(E6-2. 1st fl.)  Jul. 10th (Mon), 4pm  Dr. Duk Young Kim Los Alamos National Laboratory  “Intertwined Orders in a Heavy-fermion metal” file
330 April 6, 2017 (Thu), 4:00 pm  IBS CAPP seminar room, Creation Hall (3F), KAIST Munji Campus  Prof. Youngjoon Kwon (Yonsei University)  For whom the Belle tolls
329 Oct. 16 (Fri.), 04:00 PM  https://kaist.zoom.us/j/89198078609  Dr. Daesu Lee  Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
328 Oct. 16 (Fri.), 02:30 PM  https://kaist.zoom.us/j/89198078609  Dr. Chulki Kim  Nanoscale magnetic resonance detection towards nano MRI file
327 Oct 9 (Fri), 09:00 AM  https://kaist.zoom.us/j/85161896513?pwd=U3pwWFFZaWVRamxDZUR5REhNeVk0UT09  Prof. Tim Hsieh (Perimeter Institute)  Quantum Many-Body Simulation file
326 October 15, 5:00pm  https://bit.ly/3ndIiJn  Dr. Samuli Autti  Time crystals, quasicrystals, and time crystal dynamics in the superfluid universe file
325 May 13 (Fri.), 1:30 PM  E6. #1501(1st fl.)  Dr. Young-Woo Son, Dept. of Physics, KIAS  Aperiodic crystals in low dimensions
324 May 13 (Fri.) 4 PM  E6. #1501(1st fl.)  Dr. Hosub Jin, Dept. of Physics, UNIST  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
323 2018. 6. 22 10:00am ~ 11:50am  E6-6, Lecture Room 119 (1F)  Prof. Sang Bok Lee, Dept. of Chemistry and Biochemistry, Univ. of Maryland  Success in Research Career file
322 February 13th (Thur.), 16:30 PM  E6-6, #119  Dr. Seyoon Kim(University of Wisconsin-Madison)  Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file