visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-24 16:00 
일시 May 24 (Tue) 4 PM 
장소 E6-2. #1323(1st fl.) 
연사 Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University 

Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density

 

May 24 (Tue) 4 PM, E6-2. #1323(1st fl.)
Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University

 

We present the electronic and magnetic properties of two dimensional (2D) MPX3 (M= transition metal, and X = S, Se, Te) transition metal thiophosphates. The MPX3 are layered van der Waals materials and exhibit novel magnetic order as a single layer. Our calculations of the magnetic ground states in MPX3 single layer compounds predict semiconducting phases with variable band gap sizes down to metallic phases depending on their magnetic orders. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, whereas diverse ground-state phases, e.g., ferromagnetic, antiferromagnetic, and nonmagnetic phases can be expected for different compounds which are accompanied by variations in the lattice constants, and non-negligible distortions in crystal symmetries. In addition, the antiferromagnetic semiconductors of MPX3 single layer show the transition to the ferromagnetic halfmetals with both electron and hole doping, which can be controlled by applying an external gate voltage in the MPX3 field effect transistors (FET). We find that the itinerant d electrons in transition metals induce the ferromagnetic to antiferromagnetic transition accompanied by the metal to semiconductor transition. The sensitive interdependence between the magnetic, structural, and electronic properties suggest important potential of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

 

Contact: Sungjae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
25 2016-05-16 16:00  #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
24 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
23 2016-11-1 10:30  #1323(E6-2 1st fl.)  Time scale dependent dynamics in InAs/InP quantum dot gain media
22 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
21 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
20 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
19 2017-04-28 16:00  #1323 (E6-2. 1st fl.)  Carbon nanotubes coupled to superconducting impedance matching circuits
18 2017-07-14 15:00  #1323 (E6-2. 1st fl.)  Chiral anomaly in disordered Weyl semimetals file
17 2017-06-02 16:00  #1323 (E6-2. 1st fl.)  Maxwell's demon in quantum wonderland file
16 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
15 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
14 2017-11-28 16:00  #1323 (E6-2. 1st fl.)  Physics after the lab and the desk: Your work in PRL file
13 2019-10-29 10:00  #1323 (E6-2, 1st fl.)  Unconventional Spin Transport in Quantum Materials file
12 2018-04-13 10:00  #1323 (E6-2, 1st fl.)  Quantum meets Mechanics: from Quantum Information to Fundamental Research file
11 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
10 2019-10-16 16:00  #1323 (E6-2, 1st fl.)  Emergent black holes and monopoles from quantum fields file
9 2019-10-29 16:00  #1323 (E6-2, 1st fl.)  Particles and Gravity via String Geometry file
8 2019-10-31 10:00  #1323 (E6-2, 1st fl.)  Kondo meets Hubbard: Impurity physics for correlated lattices file
7 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
6 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets