visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-01-12 11:00 
일시 Jan 12th (Wed), 11:00 AM 
장소 Zoom and E6 #1323 
연사 Joonseok Hur (MIT) 

 

Title: Spectroscopic study of trapped ions towards probing dark matter and new physics

 

Speaker: Joonseok Hur (MIT)

 

January 12th (Wednesday), 11:00, E6 #1323 &

Zoom link: https://kaist.zoom.us/j/86232436126

 

 

Historically, precise atomic spectroscopy has led to new physics in many instances. Precision low-energy experiments may thus supplement high-energy and astrophysical approaches. It has been proposed to measure the isotope shifts (ISs) in ions to probe new physics using King plots [1], a two-dimensional graph that maps the measured ISs [2]. The Standard Model (SM) predicts in the leading order that the points in King plots should lie on a straight line. Departure from such linearity is unambiguously observed in our recent experiments with narrow optical transitions in trapped ions [3]. However, the contribution of higher-order corrections to the non-linearity within the SM complicates the test. The sources of the observed violation should be examined carefully to decouple the SM corrections arising from nuclear physics from possible new-physics contributions.

Here I will present our latest experimental and theoretical efforts to observe the non-linearity, identify its physical origin, and obtain the bound on dark boson-mediated interaction as a particular type of new physics that is of increasing interest. Future works will be discussed subsequently.

 

[1] J. C. Berengut et al., Physical Review Letters 120, 091801 (2018); V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Physical Review A 97, 032510 (2018); C. Delaunay et al., Physical Review D 96, 093001 (2017).

[2] W. H. King, Isotope Shifts in Atomic Spectra (Plenum Press, New York, 1984).

[3] I. Counts*, J. Hur* et al., Physical Review Letters 125, 123002 (2020) for the early stage of the work.

 

 

 

Contact: Myeongsoo Kang (mskang@kaist.ac.kr)

번호 날짜 장소 제목
464 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
463 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
462 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
461 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file
460 2019-05-24 16:00  #1323, E6-2  Infrared spectroscopy study on metal-insulator transitions in layered perovskite iridates file
459 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
458 2019-05-09 16:00  #1323, E6-2  Quantum Optical Sensing Using Single Photons And Single Photon Emission from Single Emitters file
457 2019-04-23 16:00  #1323, E6-2  From Mott physics to high-temperature superconductivity file
456 2019-05-30 16:00  #1323, E6-2  Tuning the excitonic properties of semiconductors with light-matter interactions file
455 2019-04-11 16:00  #1323, E6-2  Massive screening for cathode active materials using deep neural network file
454 2019-04-04 16:00  #1323, E6-2  Chiral spin-photon interaction at nanoscale file
453 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
452 2018-09-20 16:00  #1323, E6-2  Toward Cancer Treatment Using Terahertz Radiation: Demethylation of Cancer DNA file
451 2019-04-26 16:00  #1323, E6-2  Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
450 2019-06-17 10:30  #1323, E6-2  Chiral Spintronics file
449 2019-05-01 16:00  #1323, E6-2  Raman and x-ray scattering study on correlated electron systems: two case examples file
448 2019-05-31 11:00  #1323, E6-2  Cavity QED with Spin Qubits file
447 2019-05-08 16:00  E6 Room(#1323)  Imaging valley dependent electron transport in 2D semiconductors file
446 2019-12-13 13:30  #1323, E6-2  Biophysics Mini-symposium at KAIST file
445 2018-07-09 14:00  #1323, E6-2  The principles of collective learning file