visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2018-06-14 10:00 
연사  
장소 E6-2, 2nd fl. #2502 

Physics Seminar

 

 

Phonons and polariton-like particles in trapped ions for quantum computation and quantum simulation”

 

Prof. Kenji Toyoda

Osaka University

 

June 14 (THU), 10:00 AM

E6-2, 2nd fl. #2502

 

Phonons are ubiquitous quantum-mechanical excitations representing the quantized energies of vibrational modes.  They are becoming more and more actively controled and used in such areas as phonon engineering and optomechanical systems. In the study of trapped ions for quantum information processing, as well, phonons has taken essential roles. They have been traditionally used to mediate information between internal-state qubits to realize quantum gates. On the other hand, they have certain useful properties, in their own right, for use as independent degrees of freedom. Phonons obey the Bose-Einstein statistics, and by adjusting trap parameters they can take global as well as local characteristics. These properties can be utilized for such areas as quantum computation and quantum simulation.

  In this talk, I would like to present three topics related to phonons and characteristic motions in trapped ions. The first one is experiments on two-phonon interference (the Hong-Ou-Mandel effect) and prospects toward realization of phonon-based quantum computing using the interference of multiple phonons. The second topic is the quantum simulation of interacting particles in solid-state materials based on phonon-based quasiparticles. When ions are illuminated with optical pulses resonant to vibrational sidebands, quasiparticles called phonon-polaritons are formed, which can be used for quantum simulation that catches the basic characteristics of interacting electrons in solids. The last topic is the study of a ''quantum rotor'' made from a three-ion crystal in a triangular shape. The superpositions of optically distiguishable two orientations of the crystal are realized by cooling its rotational mode to the ground state. Furthermore, their dependence to an applied static magnetic field, due to the Aharonov-Bohm effect, is observed.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

 

Department of Physics, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
545 2015-09-15 16:00    Physics Colloquium : 2014 Fall file
544 2022-03-14 16:00    Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
543 2023-04-27 16:00    (광학분야 세미나)On-chip spectrometers based on CMOS image sensors
542 2021-05-27 16:00    찾아가는 물리연구 현장(유럽 입자물리학연구소 소개) file
541 2016-03-11 13:30    Physics Seminar Serises : 2016 Spring file
540 2022-11-03 16:00    (광학분야 세미나) Single-photon emission from low-dimensional materials
539 2015-09-07 16:00    Physics Colloquium : 2015 Fall file
538 2025-03-28 11:00  명노준 교수 (조선대)  Quantum Transport in Strained-Engineered Graphene: Mesoscopic Perspective of Tunable Quantum Information Devices file
537 2025-05-15 16:00  노찬 박사(KAIST)  Generation of multimode Gaussian quantum states and their applications for quantum computing file
536 2022-04-11 16:00    Emergence of Statistical Mechanics in Quantum Systems
535 2022-04-04- 16:00    New paradigms in Quantum Field Theory
534 2022-05-09 16:00    Searching for new electronic properties in correlated material flatland
533 2022-05-23 16:00    Novel electronic transport in topological van der Waals magnets
532 2011-09-03 16:00    Physics Colloquium : 2011 Fall file
531 2022-10-13 16:00    (광학분야 세미나) Ultrafast Optics for Ultra-Precision Metrology and Realization of Flexible/Stretchable Laser-Induced-Graphene Electronics
530 2020-11-12 16:00    2020 가을학기 광학분야 특별세미나
529 2022-10-07 11:00    [Update 세미나 영상] (응집물리 세미나) Competing orders in a vanadium-based kagome metal monolayer file
528 2022-10-28 11:00    [Update 세미나영상] (응집물리 세미나) Machine-Learning-Guided Prediction models and Materials discovery for high Tc cuprates file
527 2017-10-10 16:00    Discovery of New 2D Materials with Diverse Physical Properties
526 2023-04-06 16:00    (광학분야 세미나)Nanophotonics-based approaches to explore Berry physics