visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:10124

날짜 2017-02-01 14:00 
연사  
장소 #1323(E6-2. 1st fl.) 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
554 2016-04-08 13:30    Theoretical Overview of Iron-based superconductors and its future
553 2016-04-08 16:00    Spectroscopic studies of iron-based superconductors : what have we learned?
552 2016-04-12 16:00    Confinement of Superconducting Vortices in Magnetic Force Microscopy
551 2016-04-18 15:30    First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
550 2016-04-19 14:00    Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
549 2016-04-26 16:00    Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
548 2016-04-28 15:00    Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
547 2016-05-11 16:00    The quest for novel high-temperature superconductors---Prospects and progress in iridates
546 2016-05-13 13:30    Aperiodic crystals in low dimensions
545 2016-05-13 16:00    Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
544 2016-05-16 16:00    Tuning microwave cavities with biased nonlinear dielectrics for axion searches
543 2016-05-17 11:00    The CERN Resonant WISP Search: Development, Results and Lesson-Learned
542 2016-05-19 15:00    The CERN Resonant WISP Search: Development, Results and Lesson-Learned
541 2016-05-19 16:00    Nonlinear/quantum optical effect in silicon nano-photonics
540 2016-05-24 16:00    Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
539 2016-05-31 16:00    Understanding 3D tokamak physics towards advanced control of toroidal plasma
538 2016-06-01 10:30    Welcome to Nature Photonics
537 2016-06-01 16:00    Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
536 2016-06-14 15:00    No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
535 2016-06-14 16:00    Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction