visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Non-reciprocal phase transitions

2022.03.28 11:35

admin 조회 수:550

날짜 2022-03-29 10:00 
일시 10AM, 29th Mar. / 13:30 PM, 30th Mar. 
장소 E6 #1501/zoom, E6 #2502/zoom 
연사 Dr. RYO HANAI (APCTP) 
Title: Non-reciprocal phase transitions
presenter Dr. RYO HANAI (APCTP) 
Date: 10AM, 29th Mar. E6 #1501/zoom
        13:30 PM, 30th Mar. E6 #2502/zoom  
 

https://us02web.zoom.us/j/87623324709?pwd=TElFeTZZT2xCZnZ1azV5OEg4N1BjUT09

회의 ID: 876 2332 4709

암호: 125958

 
abstract

Phase transitions are ubiquitous in nature. For equilibrium cases, the celebrated Landau theory has provided great success in describing these phenomena on general grounds. Even for nonequilibrium transitions such as optical bistability, flocking transition, and directed percolation, one can often define Landau’s free energy in a phenomenological way to successfully describe the transition at a meanfield level. In such cases, the nonequilibrium effect is present only through the noise-activated spatial-temporal fluctuations that break the fluctuation-dissipation theorem. Here, by generalizing the Ginzburg-Landau theory to be applicable to driven systems, we introduce a novel class of nonequilibrium phase transitions [1-2] and critical phenomena [3] that does not fall into this class. Remarkably, the discovered phase transition is controlled by spectral singularity called the exceptional points that can only occur by breaking the detailed balance and therefore has no equilibrium counterparts. The emergent collective phenomena range from active time (quasi)crystals to exceptional point enforced pattern formation, hysteresis, to anomalous critical phenomena that exhibit anomalously large phase fluctuations (that diverge at d≤4) and enhanced many-body effects (that become relevant at d<8) [3]. The inherent ingredient to these is the non-reciprocal coupling between the collective modes that arise due to the drive and dissipation.

[1]  M. Fruchart*, R. Hanai*, P. B. Littlewood, and V. Vitelli, Non-reciprocal phase transitions. Nature 592, 363 (2021).

[2]  R. Hanai, A. Edelman, Y. Ohashi, and P. B. Littlewood, Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser. Phys. Rev. Lett. 122, 185301 (2019).

[3]  R. Hanai and P. B. Littlewood, Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2, 033018 (2020).
 
번호 날짜 장소 제목
473 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
472 2016-04-08 16:00  E6-2. 5st fl. #1501  Spectroscopic studies of iron-based superconductors : what have we learned?
471 2016-04-12 16:00  E6-2. 1st fl. #1323  Confinement of Superconducting Vortices in Magnetic Force Microscopy
470 2016-04-18 15:30  KI빌딩(E4), 강의실 B501 (5F)  First Principles Approaches for Intermolecular Interactions: From Gas-Phase Dimers to Liquid Water and Molecular Crystal Polymorphism file
469 2016-04-19 14:00  #1323(E6-2. 1st fl.)  Nonlocal collisional electron transport in partially ionized plasma generation, structure, and stability
468 2016-04-26 16:00  #1323(1st Floor. E6-2)  Transport spectroscopy for electronic bands in carbon-based nanomaterials with weak-bond contacts
467 2016-04-28 15:00  #2501(E6-2. 2nd fl.)  Lattice/Spin/Charge Coupling in 5d Pyrochlore Cd2Os2O7
466 2016-05-11 16:00  E6-2. #1323(1st fl.)  The quest for novel high-temperature superconductors---Prospects and progress in iridates
465 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
464 2016-05-13 16:00  E6. #1501(1st fl.)  Graphene analogue in (111)- BaBiO3 bilayer heterostructures for topological electronics
463 2016-05-16 16:00  #1323(E6-2, 1st Fl.)  Tuning microwave cavities with biased nonlinear dielectrics for axion searches
462 2016-05-17 11:00  창의학습관(E11), 406호  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
461 2016-05-19 15:00  May 19, 2016 (Thur.) 3PM,  The CERN Resonant WISP Search: Development, Results and Lesson-Learned
460 2016-05-19 16:00  #1323(E6-2, 1st fl.)  Nonlinear/quantum optical effect in silicon nano-photonics
459 2016-05-24 16:00  E6-2. #1323(1st fl.)  Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density
458 2016-05-31 16:00  #1323(E6-2, 1st fl.)  Understanding 3D tokamak physics towards advanced control of toroidal plasma
457 2016-06-01 10:30  BK21 Conference Room (#1318, E6-2)  Welcome to Nature Photonics
456 2016-06-01 16:00  #1323(E6-2 1st fl.)  Laboratory experiments relevant to mesospheric clouds, Saturn’s rings & astrophysical jets
455 2016-06-14 15:00  #1323 (E6-2 1st fl.)  No-Insulation High Temperature Superconductor Magnet Technology for Compact, Reliable, and Low-Cost High Field DC Magnets
454 2016-06-14 16:00  Seminar Room (#2502, 2nd fl.)  Photonic quantum network based on multimode squeezed vacuums and single-photon subtraction