visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-11-04 13:30 
연사  
장소 E6-2. #1323(1st fl.) 

Exotic phenomena at oxide LaAlO3/SrTiO3 hetero-interface and their applications


Nov. 04 (Fri), 1:30 PM

E6-2. #1323(1st fl.)

Dr. Jonghyun Song, Department of Physics, Chungnam National University


Abstract:
great attentions. Here we report the fabrication of spintronics devices based upon the interface ferromagnetism of LaAlO3/SrTiO3 (LAO/STO) heterostructures. The choice of the LAO/STO structure was inspired by its high-mobility two-dimensional electron gas and a number of experimental investigations revealing the spin ordering at this oxide interface. However, the possibility and mechanisms of this interfacial magnetism are still debated and the spin degree of freedom has not yet been employed adequately. The spin injection in the device in this study is enabled by an appropriately thin epitaxial Ti interlayer. Tunnelling magnetoresistance (TMR) is observed and shows such a strong in-plane anisotropy that the sign changes with the direction of applied magnetic field. This may be due to the strong Rashba-type spin-orbit coupling and the tetragonal domain configuration in the LAO/STO heterointerface. These new findings provide evidence of the interface ferromagnetism of the LAO/STO system, open up possible applications of the spin degree of freedom in the oxide heterointerfaces, and give insight into the interfacial ferromagnetic properties of complex oxide-heterostructures. Our polarity-tunable MTJs pave the way for oxide-based spintronics, in which the spin transport plays a crucial role. Furthermore, we also anticipate that these results may stimulate pursuit of two-dimensional ferromagnetism at oxide interfaces.

 

1. Thach D.N. Ngo, Jung-Won Chang, Kyujoon Lee, Seungju Han, Joon Sung Lee, Young Heon Kim, Myung-Hwa Jung, Yong-Joo Doh, Mahn-Soo Choi, Jonghyun Song, and Jinhee Kim, ‘Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces’, Nature Communications, 6, 8035(2015).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
565 2020-10-16 14:30    Nanoscale magnetic resonance detection towards nano MRI file
564 2015-12-02 16:00    Samarium Hexaboride: Is it a Topological insulator?
563 2020-10-16 16:00    Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
562 2015-11-19 16:00    Emergent Collective Phenomena and Functions at Reduced Dimensions
561 2016-05-16 16:00    Tuning microwave cavities with biased nonlinear dielectrics for axion searches
560 2018-10-12 14:30    Quantum Advantage in Learning Parity with Noise file
559 2023-04-04 16:00    Chiral Magnetism: A Geometric Perspective
558 2018-06-22 16:00    Tuning functional properties of BiFeO3 films using strain and growth chemistry file
557 2018-06-22 16:00    Tuning functional properties of BiFeO3 films using strain and growth chemistry file
556 2018-09-05 16:00    Shining a light on fractional excitations file
555 2022-03-18 11:00    (응집물리 세미나) Illuminating exotic states of matter: Raman spectroscopy as an experimental tool to characterize quantum spin liquids file
554 2021-03-02 16:00    Sensitive terahertz detection with graphene-based transistors file
553 2020-11-20 16:00    Coherent control of field gradient induced quantum dot spin qubits
552 2016-11-04 15:00    Quantum information experiments using few electron spins in semiconductors
551 2022-01-17 14:00    Five Lectures on Observational Probes of Dark Energy file
550 2018-11-09 16:00    Quantum sensing and imaging with diamond defect centers for nano-scale spin physics file
549 2022-11-18 16:00    Qubits, new experimental tools for physics file
548 2020-11-20 14:30    Lumpy Cooper pairs in an iron-based superconductor
547 2017-07-10 16:00    “Intertwined Orders in a Heavy-fermion metal” file
546 2022-05-25 14:00    Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file