visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-03-02 16:00 
일시 Mar. 2nd (Thu), 4:00 p.m 
장소 #1323(E6-2. 1st fl.) 
연사 Dr. Jonathan Denlinger, Lawrence Berkeley National Lab 

“Progress in the comparison of ARPES to DMFT for d and f strongly correlated electron systems”

 

 Dr. Jonathan Denlinger, Lawrence Berkeley National Lab

 Mar. 2nd (Thu), 4:00 p.m , #1323(E6-2. 1st fl.)

 

The comparison of angle-resolved photoemission (ARPES) to dynamical mean field theory (DMFT) electronic structure calculations is reviewed for three correlated electron systems of V2O3, CeCoIn5 and SmB6. The electronic structure of metallic phase V2O3, key to understanding its various metal-insulator transitions with temperature, doping and pressure, is revealed by ARPES to have a d-orbital band filling that is inconsistent with a 2007 DMFT model of correlation-enhanced orbital polarization, but is thematically consistent with more recent DMFT calculations stressing full charge-self-consistency.

   The Kondo lattice system CeCoIn5 is shown to exhibit itinerant f-electron participation in the localized-like 3D Fermi surface topology consistent with the low energy scale description of DMFT calculations, and with a temperature-dependence that extends far above the transport coherence temperature of T*~45K. 

   Finally, the temperature-dependent evolution of the bulk 4f electronic structure of mixed-valent SmB6 revealed by ARPES and DMFT identifies an important role in f-p hybridization assistance to the metal-insulator transition (MIT) beyond the minimal two-band models of f-d hybridization.  The current status of the topological insulator scenario for the SmB6 in-gap surface states is also reviewed.

 

Contact: Yeong Kwan Kim (Tel. 2516, yeongkwan@kaist.ac.kr)

번호 날짜 장소 제목
85 2018-10-18 16:00  #1323, E6-2  Applications of nonlinear optics for condensed matter researches file
84 2018-11-29 16:00  #1323, E6-2  양자 칸델라 실현을 위한 단일 광자 발생장치 개발 file
83 2019-10-17 16:00  #1323, E6-2  Top down manipulation of Waves : From Metamaterials, Correlated Disorder, Quantum Analogy, to Digital Processing file
82 2018-05-29 16:00  #1323, E6-2  Investigation on metal nanostructure/semiconductor junction and its applications file
81 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
80 2018-10-25 16:00  #1323, E6-2  Abelian and non-Abelian dark photons file
79 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
78 2018-07-27 13:30  #1323, E6-2  Magnetic reversal of artificial spin ice file
77 2019-11-07 16:00  #1323, E6-2  Integrated quantum photonics with solid-state quantum emitters file
76 2018-10-26 16:00  #1323, E6-2  Coexisting triple-point and nodal-line topological magnons and thermal Hall effect in pyrochlore iridates file
75 2018-11-08 16:00  #1323, E6-2  Conformality lost file
74 2019-10-29 14:30  #1323, E6-2  Quantum sensing file
73 2018-09-05 16:00  #1323, E6-2  Shining a light on fractional excitations file
72 2019-12-03 16:00  #1323, E6-2  Toward Quantum Materials with Correlated Oxides file
71 2020-02-20 16:00  #1323, E6-2  Unconventional superconductivity in the locally non-centrosymmetric heavy-fermion CeRh2As2 file
70 2018-10-18 10:00  #1323, E6-2  Understanding membrane protein folding using single-molecule force techniques file
69 2019-08-22 16:00  #1323, E6-2  Physics and Applications in Nanoelectronics and Nonomechanics file
68 2019-07-30 16:00  #1323, E6-2  Dirac fermions and flat bands in correlated kagome metals file
67 2019-06-04 17:00  #1323, E6-2  Stochastic nature of bacterial eradication using antibiotics file
66 2019-04-19 11:00  #1323, E6-2  First-principles studies of semiconductors for solar cell applications file