visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2017-08-31 14:00 
일시 AUG. 31 (Thu.), 2 PM 
장소 #5318(E6-2. 5th fl.) 
연사 Prof. Hiroaki Ishizuka (The University of Tokyo) 

“Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals”

Prof. Hiroaki Ishizuka (The University of Tokyo)

AUG. 31 (Thu.), 2 PM / #5318(E6-2. 5th fl.)

 

Berry phase is one of the important keywords to understand non-trivial quantum effects. In condensed matter physics, the Berry phase often shows up in transport phenomena (e.g., quantum and anomalous Hall effects) and is considered as a keyword to understand topological properties of non-interacting fermion systems. While most of such studies have focused on the equilibrium states or linear responses in close to the equilibrium, a recent study on the photogalvanic effects have pointed out the relation between the Berry phase and photogalvanic effects in noncentrosymmetric insulators where inter-band transitions take an essential role [1-3]; it is named shift current as it is related to the shift of the Wannier function. So far, however, no observable consequences that distinguish this phenomenon from the conventional mechanism is known. In this talk, we theoretically explored the basic properties of shift current focusing on the distinction between the conventional and shift current mechanisms. 

To theoretically study the photocurrent, we employed a Keldysh Green’s function formalism combined with Floquet theory. Using a large size numerical calculation, we study how the photocurrent changes by the local excitation, i.e., when only a part of the system is irradiated by the light. We show that, for the shift current, the magnitude of the current does not depend on the position of the light [4]. This is in contrast to the conventional mechanism, where the photocurrent is expected to be larger at the edge of the sample while it is suppressed when the light is at the center. Such behavior is consistent with the photocurrent recently observed in a noncentrosymmetric organic solid [5].

In the latter half of the talk, we discuss the effect of Berry phase on the photocurrent in Weyl semimetals [6,7]. We show that the Berry phase associated with the Weyl nodes induce a similar phenomenon to the adiabatic pump, resulting in a dissipation-less photocurrent. We find that the photocurrent appears only with the circularly polarized lights. This mechanism may potentially explain the photocurrent observed in TaAs [8].

 

[1] W. Kraut and R. von Blatz, Phys. Rev. B 19, 1548 (1979); ibid. 23, 5590 (1981). 

[2] J. E. Sipe and A. I. Shkrebtii, Phys. Rev. B 61, 5337 (2000).

[3] T. Morimoto and N. Nagaosa, Science Adv. 2, e1501524 (2016).

[4] H. Ishizuka and N. Nagaosa, New J. Phys. 19, 033015 (2017).

[5] M. Nakamura, et al., Nature Commun. 8, 281 (2017).

[6] H. Ishizuka et al., Phys. Rev. Lett. 117, 216601 (2016).

[7] H. Ishizuka et al., Phys. Rev. B 95, 245211 (2017).

[8] Q. Ma et al., preprint (arXiv: 1705.00690).

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

20170831_Hiroaki Ishizuka.pdf

번호 날짜 장소 제목
153 2018-04-06 10:00  #2502, E6  Entanglement and thermalization in many-body systems: recent progress file
152 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
151 2018-03-16 14:30  E6-2. 1st fl. #1323  산화물 다층박막에서의 다양한 물리현상 file
150 2018-02-12 15:00  #C303, (Creation Hall 3F, KAIST Munji Campus)  The recent result of XMASS Experiment
149 2017-12-15 09:20  E6-2, Lecture Room #1323  Workshop on Magnetism in Unconventional Superconductors 개최 file
148 2017-12-14 15:00  Seminar Room (C303), Creation Hall (3F), KAIST Munji Campus  Exploring the Universe via GWs in the era of multi-messenger astronomy
147 2017-12-13 13:30  자연과학동 대형강의실 (1501호)  KAIST-KIAS Joint Workshop in Theoretical Sciences 개최 file
146 2017-11-28 16:00  #1323 (E6-2. 1st fl.)  Physics after the lab and the desk: Your work in PRL file
145 2017-11-08 13:00  #5318 (E6-2. 5th fl.)  “Emergent exotic quasiparticles in quantum spin liquids” file
144 2017-11-03 16:00  #1323 (1st fl., E6-2.)  Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions file
143 2017-11-03 14:30  #1323 (1st fl., E6-2.)  Quantum Resistor-Capacitor Circuit with Majorana Edge States file
142 2017-10-10 16:00  E6-2 #1323  Discovery of New 2D Materials with Diverse Physical Properties
141 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
140 2017-09-22 16:00  E6-2. 1st fl. #1323  Unexpected Electron-Pairing in Integer Quantum Hall Effect file
139 2017-09-22 14:30  E6-2. 1st fl. #1323  Quantum Electronic Transport in Graphene Hybrid Nanostructures file
138 2017-09-22 13:00  E6-2. 1st fl. #1323  Superconductor-metal-insulator transition in thin Tantalum films file
137 2017-09-13 16:00  #1323 (E6-2. 1st fl.)  An Introduction to Quantum Spin Liquids file
136 2017-09-12 16:00  #1323 (E6-2. 1st fl.)  Exact Solution for the Interacting Kitaev Chain at Symmetric Point file
» 2017-08-31 14:00  #5318(E6-2. 5th fl.)  “Berry phase and nonlinear response: photocurrent in noncentrosymmetric insulators and Weyl semimetals” file
134 2017-08-16 16:00  #1322 (E6-2. 1st fl.)  Phonon-driven spin-Floquet valleytro-magnetism file