visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2022-10-28 11:00 
일시 Oct. 28 (Fri), 11:00AM 
장소 E6-2 #1323 
연사 김수란(경북대 물리교육과 교수) 
세미나 영상은 아래 링크로 확인 바랍니다. (공개기한: 2023.10.27까지)
 
o 일시: 2022. 10. 28(금)  11:00
o 장소: E6-2 Room 1323
o Zoom Link: https://kaist.zoom.us/j/83127228653  회의 ID:  831 2722 8653
 
o 연사: 김수란 교수(경북대학교 물리교육과)
o 강연주제: Machine-Learning-Guided Prediction Models and Materials discovery for high Tc Cuprates
Abstract
Cuprates have been at the center of long debate regarding their superconducting mechanism; therefore, predicting the critical temperatures of cuprates remains elusive. We demonstrate herein, using ab initio computations, a new trend suggesting that the cuprates with stronger out-of-CuO2-plane chemical bonding between the apical anion (O, Cl) and apical cation (e.g., La, Hg, Bi, Tl) are generally correlated with higher Tc;max in experiments. Also, using machine learning, we predict the maximum superconducting transition temperature (Tc,max) of hole-doped cuprates and suggest the functional form for Tc,max with the root-mean-square-error of 3.705 K and R2 of 0.969. We have found that the Bader charge of apical oxygen, the bond strength between apical atoms, and the number of superconducting layers are essential to estimate Tc,max. Furthermore, we predict the Tc,max of hypothetical cuprates generated by replacing apical cations with other elements. Among the hypothetical structures, the cuprates with Ga show the highest predicted Tc,max values, which are 71, 117, and 131 K for one, two, and three CuO2 layers, respectively. These findings suggest that machine learning could guide the design of new high-Tc superconductors in the future.
Attached: C.V
 
Inquiry: Prof. Se Kwon Kim(sekwonkim@kaist.ac.kr) / Prof. Hee Jun Yang (h.yang@kaist.ac.kr)
번호 날짜 장소 제목
142 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
141 2019-03-29 16:00  E6-2. 1st fl. #1323  Coherent Quantum Control and Magnetism on atoms – Trapped ion and ESR STM file
140 2019-04-19 16:00  E6-2. 1st fl. #1323  Graphene and hBN heterostructures file
139 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
138 2018-12-26 16:00  E6-2. 1st fl. #1323  Brane-like defect in 3D toric code file
137 2017-06-02 14:30  E6-2. 1st fl. #1323  Quasiparticle Interference and Fourier transform scanning tunneling spectroscopy in WTe2 (Weyl semimetal) file
136 2022-09-30 14:30  E6-2. 1st fl. #1323 & Zoom  Putting a spin on the Josephson effect file
135 2022-11-18 14:30  E6-2. 1st fl. #1323 & Zoom  Kondo cloud condensation in a highly-doped semiconductor metal file
134 2022-09-30 16:00  E6-2. 1st fl. #1323 & Zoom  Spin-orbit torque-based spintronic devices file
133 2022-11-18 16:00  E6-2. 1st fl. #1323 & Zoom  Qubits, new experimental tools for physics file
132 2022-05-25 16:00  E6-2. 1st fl. #1323 / Zoom  Uncovering New Lampposts for Dark Matter: Continuum or Conformal
131 2016-04-01 14:30  E6-2. 1st fl. #1501  Interference of single charged particles without a loop and dynamic nonlocality
130 2016-04-01 16:15  E6-2. 1st fl. #1501  Cotunneling drag effect in Coulomb-coupled quantum dots
129 2016-03-11 16:00  E6-2. 1st fl. #1501  Jan. Switching handedness of of chiral solitons in Z4 topological insulators
128 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
127 2016-03-11 13:30  E6-2. 1st fl. #1501  Topological phases of matter in nonequilibrium: Topology of the Wannier-Stark ladder
126 2019-01-09 16:00  E6-2. 2nd fl. #2501  Molecular Mott state in the deficient spinel GaV4S8 file
125 2015-10-16 16:00  E6-2. 2nd fl. #2501  Fluctuations of entropy production in partially masked electric circuits
124 2015-09-14 14:00  E6-2. 2nd fl. #2501  Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions
123 2018-06-18 10:00  E6-2. 2nd fl. #2502  Rydberg electromagnetically induced transparency and microwave-to-optical conversion using Rydberg atoms file