visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2023-04-27 11:00 
연사  
장소 E6-2 #1322 
Royal Holloway University of London 에서 초천도 나노와이어 양자현상을 연구하고 계신 김경호 박사를 모시고 세미나를 진행할 예정입니다.
관심있는 분들의 많은 참여 부탁드립니다.
 
We are delighted to announce the upcoming seminar by Dr. Kyung Ho Kim  (Royal Holloway University of London).
 
Date: April 27 (Thu) 11 AM
Place: 1322 Natural Science (No Zoom broadcasting)
Speaker: Dr. Kyung Ho Kim  (Royal Holloway University of London)  
 
Title: Inverse Shapiro steps and coherent quantum phase slip in superconducting nanowires  
 
Abstract:
We observe clearly visible steps at constant currents I=2efn on the current voltage characteristic of a superconducting nanowire with integer n, exposed to microwave of frequency f [1]. These current steps are dual steps to the well-known Shapiro steps in Josephson junctions which are currently used for commercial Josephson voltage standard in quantum metrology. The dual Shapiro step, or inverse Shapiro step, was theoretically predicted more than 30 years ago in Josephson junctions [2], but it was elusive for the experimentalists due to challenges of circuit engineering. Superconducting nanowires are another system that is predicted to show the dual Shapiro steps due to the coherent quantum phase slip [3]. We embed a superconducting nanowire in an appropriate electromagnetic environment. The inverse Shapiro step is exceedingly promising for closing the so-called quantum metrology triangle as the voltage standard is based on the usual Shapiro steps. I will discuss physics of QPS in superconducting nanowires and condition for the observation of the current quantization.  
 
[1] Shaikhaidarov, R.S., Kim, K.H., Dunstan, J.W. et al. Nature 608, 45–49 (2022) 
[2] Averin, D.V., Zorin, A.B., Likharev, K.K.: Bloch oscillations in small Josephson junctions. Soviet Physics - JETP 61(2), 407 (1985) 
[3] Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nature Physics 2(3), 169 (2006)
 
번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
226 2017-11-03 16:00    Expedition to the Kitaev Quantum Spin Liquid: Hunting for Majorana fermions file
225 2016-11-29 16:00    Symmetry Protected Kondo Metals and Their Phase Transitions
224 2022-10-26 10:00    Replica Higher-Order Topology of Hofstadter Butterflies in Twisted Bilayer Graphene
223 2016-10-07 13:30    “Symmetry and topology in transition metal dichalcogenide?”
222 2022-11-24 16:00    Probing fundamental physics by mapping the mm and sub-mm sky
221 2023-09-18 16:00    [CAPP Seminar] Searching for axions in quantum vacuum birefringence file
220 2019-04-26 16:00    Robust Quantum Metrology using Strongly Interacting Spin Ensembles and Quantum Convolutional Neural Network file
219 2021-12-03 14:30    Topological Spin Textures: Skyrmions and Beyond file
218 2019-11-05 16:00    Study on nanomaterials by the development of ultrahigh resolution laser-photoelectron microscopy (PEEM) file
217 2019-11-20 16:00    Correlation between superconducting transition temperature and critical current density in irradiated iron-based superconductors file
216 2020-02-13 16:30    Enhanced Light-Matter Interactions in Graphene with Noble Metal Plasmonic Structures file
215 2022-06-10 14:30    Combinatorial strategy for condensed matter physics: study on rare earth hexaborides thin films file
214 2019-10-31 10:00    Kondo meets Hubbard: Impurity physics for correlated lattices file
213 2018-04-09 11:00    Doublon-holon origin of the subpeaks at the Hubbard band edges file
212 2019-10-29 16:00    Particles and Gravity via String Geometry file
211 2018-06-01 11:00    Topological phases in low-dimensional quantum materials file
210 2019-03-29 14:30    Epitaxial Multifunctional Oxide Thin Films for Novel Electronics file
209 2016-01-26 14:00    Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
208 2023-10-11 16:00    [High Energy Theory Seminar] Axion Magnetic Resonance
207 2023-09-21 16:00    [CAPP seminar] Axion Magnetic Resonance file