visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-05-24 16:00 
일시 May 24 (Tue) 4 PM 
장소 E6-2. #1323(1st fl.) 
연사 Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University 

Electronic and magnetic properties of 2D transition-metal thiophosphates and tunability of magnetic order with carrier density

 

May 24 (Tue) 4 PM, E6-2. #1323(1st fl.)
Dr. Euyheon Hwang, SKKU Advanced Institute of Nanotechnology, Sung Kyung Kwan University

 

We present the electronic and magnetic properties of two dimensional (2D) MPX3 (M= transition metal, and X = S, Se, Te) transition metal thiophosphates. The MPX3 are layered van der Waals materials and exhibit novel magnetic order as a single layer. Our calculations of the magnetic ground states in MPX3 single layer compounds predict semiconducting phases with variable band gap sizes down to metallic phases depending on their magnetic orders. A systematic trend of decreasing band gaps in antiferromagnetic states is observed as the chalcogen atoms S, Se, and Te change from smaller to larger atomic number, whereas diverse ground-state phases, e.g., ferromagnetic, antiferromagnetic, and nonmagnetic phases can be expected for different compounds which are accompanied by variations in the lattice constants, and non-negligible distortions in crystal symmetries. In addition, the antiferromagnetic semiconductors of MPX3 single layer show the transition to the ferromagnetic halfmetals with both electron and hole doping, which can be controlled by applying an external gate voltage in the MPX3 field effect transistors (FET). We find that the itinerant d electrons in transition metals induce the ferromagnetic to antiferromagnetic transition accompanied by the metal to semiconductor transition. The sensitive interdependence between the magnetic, structural, and electronic properties suggest important potential of 2D magnetic van der Waals materials for strain and field-effect carrier tunable spintronics.

 

Contact: Sungjae Cho, Physics Dept., (sungjae.cho@kaist.ac.kr)

번호 날짜 장소 제목
193 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
192 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
191 2022-03-21 16:00  E6, #1501  Multi-wavelength Studies on Relativistic Jets from Gamma-ray Bright Active Galactic Nuclei
190 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
189 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
188 2022-03-07 16:00  E6, #1501  Climate Physics and Modelling(우리말강의)
187 2022-03-28 16:00  E6, #1501  Ultimate-density atomic semiconductor via flat bands
186 2022-02-28 16:00  E6, #1501  Spin-based training of optical microscopes
185 2022-04-04- 16:00  E6, #1501  New paradigms in Quantum Field Theory
184 2022-05-30 16:00  E6, #1501  Light manipulation using 2D layered semiconductors
183 2022-03-14 16:00  E6, #1501  Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference
182 2022-04-11 16:00  E6, #1501  Emergence of Statistical Mechanics in Quantum Systems
181 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
180 2024-06-12 13:30  E6, #1501  Competition between superconductivity and density waves in spin-degenerate and spin-orbit-coupled Bernal bilayer graphene
179 2015-10-23 10:30  E6, #1501  How to write a good scientific paper[Open lecture series]
178 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
177 2023-07-10 16:00  E6, #1323  Electronic structures of magnetic and non-magnetic ordering in d- and f-electrons systems
176 2019-07-08 14:00  E6, #1322  Ultrabroadband squeezed pulses and their relation to relativity file
175 2022-05-25 14:00  E6 Room(#2501)  Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
174 2018-11-22 15:00  E6 Room(#1323)  Experimental and Computational Study on Physical Properties based on Granular System file