visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-11-10 16:00 
일시 2015/11/10, 4PM 
장소 E6-2, #1323 
연사 Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) 

“Rapid heating of matter using high power lasers

 

 Dr. Woosuk Bang

Physics division, Los Alamos National Laboratory

 

Nov. 10 (TUE), 4:00 p.m. , Seminar Room(#1323)

 

 With the development of several novel heating sources, scientists can now heat a small sample rapidly above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. On the Trident laser facility at Los Alamos National Laboratory, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils rapidly and uniformly. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. We developed a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

Using even smaller targets (~10 nm radius spheres of solid deuterium), ion temperatures exceeding 108 K have been achieved in the laboratory. We will discuss briefly about nuclear fusion experiments using high power lasers.

 

Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
553 2024-07-23 16:00  KI Building(E4) Matrix Hall(2F)  Spin Conversion Research Towards Novel Spintronic Functionalities file
552 2024-07-22 14:00  E6-2 #3441  Nonthermal electronic orders in photo-doped Mott insulators
551 2024-07-18 11:00  E6-2 #1323  Acousto-electric non-local detection of magnon-phonon coupling
550 2024-07-10 16:00  E6-2 #2502  [High Energy Theory Seminar] The Weak Gravity Conjecture in Perturbative String Theory
549 2024-07-03 16:00  E6-2 #2502  [High Energy Theory Seminar] Holographic duals of Higgsed Dpb(BCD)
548 2024-06-13 16:00  E6-2, #1323  Magnonic $\varphi$ Josephson junction and its non-Hermitian Josephson diode effect
547 2024-06-13 16:00  Zoom  [CAPP seminars]Simulation, design and fabrication of Josephson Parametric Amplifiers for axion search file
546 2024-06-12 16:00  E6-2, #1323  New high Tc superconductivity and symmetric pseudogap metal in the bilayer nickelate La3Ni2O7-Part2 file
545 2024-06-12 13:30  E6, #1501  Competition between superconductivity and density waves in spin-degenerate and spin-orbit-coupled Bernal bilayer graphene
544 2024-06-05 10:00  E6, #2501  Moir\’e fractals in supermoir\’e structures
543 2024-06-03 11:00  E6, #3441  New high Tc superconductivity and symmetric pseudogap metal in the bilayer nickelate La3Ni2O7-Part1 file
542 2024-05-30 10:00  E6-2, #2501  Quasiperiodic Effects in Quasicrystals
541 2024-05-29 16:00  E6-2, #2502  [High Energy Theory Seminar] Amplitudes Meet Cosmology: From Inflation to the Large-Scale Structure
540 2024-05-28 11:00  E6-2, #2501  동적평균장 이론 소개
539 2024-05-28 10:00  E6-2, #2501  Mixed-State Quantum Spin Liquids and Dynamical Anyon Condensations in Kitaev Lindbladians
538 2024-05-16 16:00  E6-2, #1323  [High Energy Theory Seminar] Conformal Collider Physics
537 2024-05-16 14:30  E6-2 #2502 & Zoom  [Astrophysics Seminar] Observational Cosmology with Superconducting Sensors
536 2024-05-14 16:00  E6-2, #2502  [High Energy Theory Seminar] Minimal Production of Prompt Gravitational Waves during Reheating.
535 2024-05-08 16:30  E6-2 #2502  [High Energy Theory Seminar] Black Holes from Heavy Operators in N=4 SYM
534 2024-05-01 16:00  E6-2 #2502  [High Energy Theory Seminar] Across the Mass Spectrum: Utilizing Small-Scale Structures to Probe Dark Matters