visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-09-14 14:00 
일시 2015/09/14, 2PM 
장소 E6-2. 2nd fl. #2501 
연사 Dr. Hae Ja Lee ( Stanford University, SLAC ) 

Ultrafast X-ray Studies on Dynamics Matter in Extreme Conditions

 

2015/09/14(Mon) 2PM, E6-2. 2nd fl. #2501
Dr. Hae Ja Lee,  Stanford University, SLAC


Investigation of matter properties in extreme thermodynamic conditions has attracted numerous experimental and theoretical work motivated by its implication in shock wave physics, high pressure physic, geoscience, dense plasmas, warm dense matter, x-ray and laser created plasmas, and astrophysically relevant plasmas. Static compression studies using diamond anvil cells and synchrotron light source have revealed structural phase transitions of crystalline material under high pressure. Recent shock compression studies at high power optical laser facilities have accomplished measurements of material properties in extreme conditions beyond pressures generated by diamond anvil cells. In particular, dynamic compression experiments have contributed to produce and probe a broad range of extreme conditions on very short time scales. However, the understanding the atomic-level dynamic response of material under such conditions are not well understood yet. 
The LCLS free electron laser providing femtosecond pulses of keV x-rays with sufficient brilliance (~1012 photons /pulse) is well suited to examine dynamic responses in materials subject to a broad range of peak stresses (~ 5 GPa to above 100 GPa) and time durations (10s fs up to several hundred ns). Development of advanced diagnostic technique using LCLS beam permits experiments in the regimes of interest at the time and spatial scales of the simulations. This talk will present state-of-the-art experimental platform at MEC endstation and address phase transitions and dynamic responses of several materials including Bi, Si, SiO2 during shock loading. I will also look into the potential to advance our knowledge of the dynamic behavior.

 

Contact: EunJung Jo, Physics Dept., (jojo@kaist.ac.kr)

번호 날짜 장소 제목
171 2022-04-25 16:00  E6, #1501  Ultrafast electron beam, a tool to explore the nanoscopic world of materials(우리말강의)
170 2022-04-28 16:00  E6 1323  (광학분야 특별세미나)Adiabaticity and symmetry in optical waveguide design
169 2022-05-02 16:00  E6, #1501  What can we learn from the history of science and technology?(우리말강의)
168 2022-05-09 16:00  E6, #1501  Searching for new electronic properties in correlated material flatland
167 2022-05-10 16:00  E6 1323  (광학분야 특별세미나)Testing quantum thermodynamics using quantum optics
166 2022-05-11 16:00  E6-2. #1323 & Zoom  Gravity as a phenomenon in quantum dynamics
165 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
164 2022-05-13 14:30  Zoom webinar  Topological Superconducting Spintronics Towards Zero-Power Computing Technologies file
163 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
162 2022-05-16 16:00  E6, #1501  Design synthetic topological matter with atoms and lights
161 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
160 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
159 2022-05-19 15:00  online  (광학분야 특별세미나)Development of a multimodal optical system for improved disease diagnosis
158 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
157 2022-05-20 11:00  E6-1 #1323  (응집물리 세미나) Exploration of new polymorphs in van der Waals crystals
156 2022-05-23 16:00  E6, #1501  Novel electronic transport in topological van der Waals magnets
155 2022-05-25 14:00  E6 Room(#2501)  Atomic-level insights into ferroelectric switching and preferred orientation of ultrathin hafnia file
154 2022-05-25 16:00  E6-2. 1st fl. #1323 / Zoom  Uncovering New Lampposts for Dark Matter: Continuum or Conformal
153 2022-05-26 16:00  E6 1323  (광학분야 특별세미나)Topological photonic devices
152 2022-05-27 11:00  Online seminar  Current Status and Future Plans of ADMX file