visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Large-scale Silicon Photonic MEMS Switches

2016.09.28 19:50

Physics 조회 수:8995

날짜 2016-09-29 16:00 
연사  
장소 E6-2 #1323 (1st floor) 

Large-scale Silicon Photonic MEMS Switches


Sep. 29th(Thu), 4PM, E6-2 #1323 (1st floor)

Dr. Sangyoon Han, Department of Physics, KAIST

 

Abstract:

Fast optical-circuit-switches (OCS) having a large number of ports can significantly enhance the performance and the efficiency of modern data centers by actively rearranging network patterns. Commercially available optical switches operating with the use of moving mirror arrays have port counts exceeding 100x100 and insertion losses fewer than a few dBs. However, their switching speeds are typically tens-of-milliseconds which limits their applications in highly dynamic traffic patterns.

Recently, optical switches based on silicon photonics technology have been designed and built. Silicon photonic switches with microsecond or nanosecond response times have been demonstrated, and silicon photonic switches with integrated CMOS driving circuits have been demonstrated. However, the demonstrations were mostly limited to a small number of ports due to their cascaded 2x2 architecture which induces high optical losses as port-count increases. Moreover, the demonstrations were limited to single polarization operations, and narrow spectral bandwidths.

In this talk, I will introduce a new architecture for silicon photonic switches that is highly scalable (optical insertion loss < 1 dB regardless of port-count), polarization-insensitive (< 1dB of PDL), and ultra-broadband (~300nm). The new architecture uses a two-level waveguide-crossbar with moving waveguide couplers that configure light paths. Three experimental implementations of the new architecture with 50x50 ports will be shown in the talk.

 


Biography:

Sangyoon Han is a postdoctoral research associate in the Physics department at KAIST. He received his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2016. He received his B.S. in Electrical Engineering from Seoul National University. He was a recipient of Korea Foundation for Advanced Studies Scholarship for study abroad, and he was a recipient of a graduate bronze medal from Collegiate Inventors Competition (USPTO sponsored) in 2015.

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
286 2019-08-01 14:00    Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
285 2024-09-26 14:00    Quantum spin nematic phase in a square-lattice iridate
284 2019-08-27 16:00    Critical current properties of Fe-based superconductors file
283 2020-01-17 16:00    Symmetry Breaking and Topology in Superfluid 3He file
282 2024-08-16 11:00    Cathodoluminescence for nanophotonics: Applications to plasmonic bandgap materials and perovskite semiconductors file
281 2023-11-30 10:30    [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
280 2019-09-26 16:00    Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
279 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
278 2019-12-27 15:00    The superconducting order parameter puzzle of Sr2RuO4 file
277 2024-10-14 11:00    [RSVP, Oct 14th Mon] Ambassador of Hungary to Republic of Korea Special Lecture file
276 2024-10-21 13:00    [Physics Seminar] “Non-Hermitian Point-Gap Topology in Junction Systems” file
275 2024-01-16 16:00    [High Energy Theory Seminar] Towards quantum black hole microstates
274 2022-05-12 16:00    New frontiers of electroweak physics at the LHC
273 2022-05-19 16:00    Chasing Long Standing Neutrino Anomalies with MicroBooNE
272 2022-05-18 16:00    Geometry, Algebra, and Quantum Field Theory
271 2022-09-15 13:00    AdS black holes: a review
270 2016-11-18 10:30    Non-equilibrium many-body spin dynamics in diamond
269 2016-10-27 16:00    Terahertz Metal Optics
268 2019-06-28 13:30    Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
267 2016-04-08 13:30    Theoretical Overview of Iron-based superconductors and its future