visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Topological Dirac insulator

2017.05.10 14:46

관리자 조회 수:1826

날짜 2017-05-12 13:30 
일시 May. 12 (Fri.), 01:30 PM 
장소 E6-2. 1st fl. #1323 
연사 Dr. Young Kuk Kim 

“Topological Dirac insulator”

 

Dr. Young Kuk Kim 

Sungkyunkwan University 

 

May. 12 (Fri.), 01:30 PM

E6-2. 1st fl. #1323

 

 

The discovery of a topological insulator in 2005 led to remarkable development of topological band theory, revealing a variety of symmetry-protected topological insulators and semimetals. Here we introduce our recent finding of a novel topological crystalline insulating phase, referred to as a topological Dirac insulator [1]. A topological Dirac insulator is a bulk insulator with protected metallic surface states, allowed by non-symmorphic space group symmetries. Unlike conventional topological insulators, the surface states of a topological Dirac insulator occur as a four-fold degenerate Dirac point, considered as a topological phase boundary between a two-dimensional topological insulator and a normal insulator. We introduce Z4xZ2 topological invariants that characterizes topological Dirac insulator phase and demonstrate how to evaluate from the Wilson loop calculations. We also discuss its material realizations based on first-principles calculations.

 

[1] Wieder, Benjamin J., Barry Bradlyn, Zhijun Wang, Jennifer Cano, Youngkuk Kim, Hyeong-Seok D. Kim, A. M. Rappe, C. L. Kane, and B. Andrei Bernevig. "Wallpaper Fermions and the Topological Dirac Insulator." arXiv preprint arXiv:1705.01617 (2017). 

 

Contact: Eun Gook Moon, Physics Dept., (egmoon@kaist.ac.kr)

 

번호 날짜 장소 제목
259 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
258 2015-11-24 16:00  E6-2, #1323  Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
257 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II
256 2015-11-28 10:00  E6-2, #1323  Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier
255 2015-12-01 16:00  E6-2, #1323  Introducing extra dimensions to spectroscopic studies of advanced quantum materials
254 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
253 2015-12-11 15:45  E6-2, #1323  Dynamical mean field theory studies on heavy fermion system
252 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
251 2016-01-26 14:00  E6-2, #1323  Electrochemistry on Nano- and Atomic Levels: Scanning Probe Microscopy Meets Deep Data
250 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
249 2019-06-24 11:00  E6-2, #1323  Topological photonic anomalies file
248 2019-07-25 16:00  E6-2, #1323  Band topology of twisted bilayer graphene file
247 2019-07-31 16:00  E6-2, #1323  Features of ballistic superconducting graphene file
246 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
245 2023-07-12 11:00  E6-2, #1323  Study of spin-1/2 antiferromagnetic kagome Heisenberg model by symmetric projected entangled simplex states
244 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
243 2023-07-19 16:00  E6-2, #1323  [High-Energy Theory Seminar]Deriving the Simplest Gauge-String Duality
242 2023-07-18 11:00  E6-2, #1323  Non-Hermitian Casimir Effect of Magnons
241 2023-12-19 16:00  E6-2, #1323  [High Energy Theory Seminar] Non-invertible symmetries, leptons, quarks, and why multiple generations
240 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters