visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2016-04-06 15:30 
일시 April 6, 2016 (Wed), 3:30 PM 
장소 E6-2, RM #1323 
연사 Dr. Andrei Matlashov (Los Alamos National Laboratory) 

Superconducting Quantum Interference Devices for Precision Detection  
 
Dr. Andrei Matlashov (Los Alamos National Laboratory)
April 6, 2016 (Wed), 3:30 PM

E6-2, RM #1323
 
Abstract:  

Superconducting weak-link junctions and Quantum Interference Devices have been invented 50 years ago. This invention has prompted some interesting quantum physics, but the most significantly SQUIDs have brought a break-through to the field of experimental physics in building practical instruments with signal resolution close to the theoretical limit. This development has fundamentally changed experimental physics and precision instrumentation. 
   
 The first immediate consequence of invention of SQUID-based instrumentation was the appearance of Biomagnetism – a research field associated with measurements of extremely weak magnetic fields of biological origin, such as magneto-cardiography or MCG and magneto-encephalography or MEG. SQUID technology has significantly improved signal resolution in multiple areas of research, which had notable effects in the fields of biology, chemistry, astronomy, many applied engineering areas, and experimental physics, including elementary particle physics and axions search. 
 

In this presentation, I will briefly review my more than 30 years of experience working in development of SQUID-based instrumentation in various fields of application. It includes Biomagnetism, non-destructive evaluation, ultra-low field magnetic resonance imaging, explosive detection, and magnetic relaxometry with nano-markers. I will also discuss SQUID applications in experimental physics including elementary particle physics.  

번호 날짜 장소 제목
265 2024-06-13 16:00  E6-2, #1323  Magnonic $\varphi$ Josephson junction and its non-Hermitian Josephson diode effect
264 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
263 2024-01-03 11:00  E6-2, #1323  Interplay of Strong Correlations, Topology, and Disorder in 2D Quantum Matters
262 2024-01-16 14:00  E6-2, #1323  Dimer Physics and Superconductivity in La3Ni2O7
261 2024-06-12 16:00  E6-2, #1323  New high Tc superconductivity and symmetric pseudogap metal in the bilayer nickelate La3Ni2O7-Part2 file
260 2023-07-18 11:00  E6-2, #1323  Non-Hermitian Casimir Effect of Magnons
259 2023-07-12 11:00  E6-2, #1323  Study of spin-1/2 antiferromagnetic kagome Heisenberg model by symmetric projected entangled simplex states
258 2023-12-19 16:00  E6-2, #1323  [High Energy Theory Seminar] Non-invertible symmetries, leptons, quarks, and why multiple generations
257 2023-06-08 16:00  E6-2, #1323  Thermal decoupling in high-Tc cuprate superconductors
256 2023-07-19 16:00  E6-2, #1323  [High-Energy Theory Seminar]Deriving the Simplest Gauge-String Duality
255 2023-07-11 11:00  E6-2, #1323  Ordered phases, non-Fermi liquid, and quantum criticality driven by entanglement between multipoles and conduction electrons
254 2015-11-24 16:00  E6-2, #1323  Topology-based understanding of spin dynamics in inhomogeneously magnetized systems
253 2015-11-28 10:00  E6-2, #1323  Electron Tunneling Spectroscopy of Single and Bilayer Graphene with Hexagonal Boron Nitride as Tunneling Barrier
252 2015-11-19 16:00  E6-2, #1323  Emergent Collective Phenomena and Functions at Reduced Dimensions
251 2015-12-11 13:30  E6-2, #1323  Quantum spin liquid in the 1/3 depleted triangular lattice Ba3(Ru1-xIrx)Ti2O9
250 2016-09-29 16:00  E6-2, #1323  2016 Fall, Physics Seminar Serises file
249 2016-01-11 16:00  E6-2, #1323  Mott Physics in the Strong Spin-Orbit Coupling Regime
248 2015-12-03 16:00  E6-2, #1323  Hybrid solid state spin qubits in wide bandgap semiconductors
247 2015-11-10 16:00  E6-2, #1323  Rapid heating of matter using high power lasers
246 2015-11-23 13:30  E6-2, #1323  What's Beyond the Standard Model? Lessons from Run I and what might come in Run II