visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Quantum electron optics using flying electrons

2017.01.26 23:43

Physics 조회 수:10168

날짜 2017-02-01 14:00 
연사  
장소 #1323(E6-2. 1st fl.) 

Quantum electron optics using flying electrons

 

Dr. Michihisa Yamamoto, Department of Applied Physics, The University of Tokyo

Feb. 1 (Wed.), 2p.m.  #1323(E6-2. 1st fl.)

 

Abstract: Quantum electron optics is a field in which one manipulates quantum states of propagating electrons. Combined with technologies for confining and manipulating single electrons, it allows us to investigate the scattering and interference of electrons in a unit of a single electron. The necessary elements of quantum electron optics experiments include single electron beam splitter, phase shifter, Coulomb coupler, single electron source and detector, spin-orbit path and electron-pair splitter.

In this talk, we present development of some of these elements. The beam splitter and phase shifter are implemented in our original two-path interferometer [1-3]. This interferometer has been shown to be the only reliable system for the measurement of the transmission phase shift of electrons [4,5]. To suppress decoherence induced by the electron-electron interaction and enhance the interference visibility, we recently developed a two-path interferometer of depleted channels, where single electrons are injected by means of surface acoustic waves (SAWs). We also confirmed that a single electron in a static quantum dot (single electron source) can be adiabatically transferred into a SAW-driven moving quantum dot [6], a necessary ingredient for achieving the high interference visibility of a single flying electron.

Quantum electron optics also targets the manipulation of spins of flying single electrons. We found that the spin information of one or two electrons can be transferred between distant quantum dots, which work as the single electron source and detector, with the fidelity limited only by the spin flips prior to the spin transfer [7,8]. We also realized an electron-pair splitter that can be used to split spin-entangled electrons in a moving dot into different moving dots. Combined with single spin manipulation using the spin-orbit interaction (spin-orbit path) [9], this splitter should allow for Bell measurement of electron spins.

This work is in collaboration with S. Takada (now at Institut Neel), R. Ito and K. Watanabe at the University of Tokyo, B. Bertrand, S. Hermelin, T. Meunier, and C. Bäuerle at Institut Neel, and A. Ludwig and A. D. Wieck at Ruhr-Universität Bochum.

 

[1] M. Yamamoto et al., Nature Nano. 7, 247 (2012)..

[2] A. Aharony et al., New J. Phys. 16, 083015 (2014).

[3] T. Bautze et al., Phys. Rev. B 89, 125432 (2014).

[4] S. Takada et al., Phys. Rev. Lett. 113, 126601 (2014).

[5] S. Takada et al., Appl. Phys. Lett. 107, 063101 (2015).

[6] B. Bertrand et al., Nanotechnology 27, 204001 (2016).

[7] S. Hermelin et al., Nature 477, 435 (2011).

[8] B. Bertrand et al., Nature Nano. 11, 672 (2016).

[9] H. Sanada et al., Nature Phys. 9, 280 (2013).

 

Contact: SunYoung Choi, (sunyoungchoi@kaist.ac.kr)

 

 

Center for Quantum Coherence in Condensed Matter, KAIST

번호 날짜 연사 제목
공지 2025-02-24 16:00    2025년 봄학기 콜로키움 안내
공지 2025-02-27 16:00    2025년 봄 물리학과 특별세미나 (광학/응집물리 분야)
314 2020-10-16 14:30    Nanoscale magnetic resonance detection towards nano MRI file
313 2020-10-16 16:00    Hidden room-temperature ferroelectricity in CaTiO3 revealed by a metastable octahedral rotation pattern file
312 2020-10-23 14:00    Plasmon spectroscopy of low-dimensional superconductors in fluctuating regime file
311 2020-11-12 16:00    2020 가을학기 광학분야 특별세미나
310 2020-11-17 12:00    Quantum- & Nano-Photonics" 세미나 시리즈 file
309 2020-11-20 14:30    Lumpy Cooper pairs in an iron-based superconductor
308 2020-11-20 16:00    Coherent control of field gradient induced quantum dot spin qubits
307 2020-11-26 16:00    2020 가을학기 광학분야 특별세미나(Light Engineering Beyond the Diffraction Limit)
306 2020-12-02 10:00    Recent progress in Axion Dark Matter eXperiment (ADMX) technology file
305 2020-12-09 10:00    Searching for the QCD axion with the ARIADNE experiment file
304 2020-12-10 13:55    Consistency of Boltzmann equation and light dark matter from inflaton decay
303 2020-12-11 14:30    Antisymmetric interlayer exchange coupling in magnetic multilayers
302 2020-12-11 16:00    Atomic and electronic reconstruction at van der Waals interface in twisted 2D materials
301 2020-12-23 10:00    Online workshop for Quantitative Phase Imaging file
300 2021-01-28 15:00    Topological Transport of Deconfined Hedgehogs in Magnets file
299 2021-01-28 18:00    Quantum metamaterials: concept, theory, prototypes and possible applications file
298 2021-02-02 14:30    Quantum- & Nano-Photonics 세미나(Integrated Nanophotonics with Metamaterials, Microcomb, and Atomic Systems) file
297 2021-02-15 17:00    Magnetic Cluster Octupole Domain evolutation in chiral antiferromagnets file
296 2021-02-17 09:00    석학 대중 강연 및 강의 시리즈 file
295 2021-03-02 16:00    Sensitive terahertz detection with graphene-based transistors file