visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나
날짜 2015-11-10 16:00 
일시 2015/11/10, 4PM 
장소 E6-2, #1323 
연사 Dr. Woosuk Bang (Physics division, Los Alamos National Laboratory) 

“Rapid heating of matter using high power lasers

 

 Dr. Woosuk Bang

Physics division, Los Alamos National Laboratory

 

Nov. 10 (TUE), 4:00 p.m. , Seminar Room(#1323)

 

 With the development of several novel heating sources, scientists can now heat a small sample rapidly above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. On the Trident laser facility at Los Alamos National Laboratory, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils rapidly and uniformly. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. We developed a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

Using even smaller targets (~10 nm radius spheres of solid deuterium), ion temperatures exceeding 108 K have been achieved in the laboratory. We will discuss briefly about nuclear fusion experiments using high power lasers.

 

Contact: Yoonsoo Kim, Administration Office.  Tel. 2599

번호 날짜 장소 제목
247 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
246 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
245 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file
244 2016-04-08 13:30  E6-2. 1st fl. #1501  Theoretical Overview of Iron-based superconductors and its future
243 2017-09-26 11:00  #1323 (E6-2. 1st fl.)  Time-resolved ARPES study of Dirac and topological materials
242 2019-11-01 14:30  E6-2. 1st fl. #1323  Squeezing the best out of 2D materials file
241 2019-04-19 14:30  E6-2. 1st fl. #1323  A family of finite-temperature electronic phase transitions in graphene multilayers file
240 2015-11-06 16:30  E6-2, #5318  Topological Dirac line nodes in centrosymmetric semimetals
239 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
238 2018-03-16 16:00  E6-2. 1st fl. #1323  Van der Waals Heterostructures from Quantum Transport to Ultrafast Optoelectronics file
237 2022-08-09 14:00  KI building (E4), Lecture Room Red (B501)  Quantum biology in fluorescent protein: a new model system to study quantum effects in biology file
236 2016-05-13 13:30  E6. #1501(1st fl.)  Aperiodic crystals in low dimensions
235 2018-04-11 16:00  #1323 (E6-2, 1st fl.)  Non-Gaussian states of multimode light generated via hybrid quantum information processing file
234 2017-05-12 13:30  E6-2. 1st fl. #1323  Topological Dirac insulator
233 2022-05-13 16:00  자연과학동(E6-2) 1st fl. #1323  High-fidelity iToffoli gate for fixed-frequency superconducting qubits file
232 2022-06-10 11:00  Online seminar  Record-quality two-dimensional electron systems file
231 2018-04-11 13:30  #1323 (E6-2, 1st fl.)  Probing 3D Structure and Physical Properties of Materials at the Single-Atom Level file
230 2018-10-15 16:00  #1323, E6-2  Universal properties of macroscopic current-carrying systems file
229 2016-09-02 16:00  E6-2(1st fl) #1323  Quantum Electrical Transport in Topological Insulator Nanowires
228 2016-09-02 14:30  E6-2(1st fl.), #1323  Nanoscale Thermal Physics: Seebeck Effect and Nanoscale Friction