visual
visual

세미나

  • HOME
  • >
  • 소식
  • >
  • 세미나

Geometry, Algebra, and Quantum Field Theory

2022.05.17 18:02

admin 조회 수:993

날짜 2022-05-18 16:00 
일시 May. 18(Wed), 4pm 
장소 E6-2. #1323 & Zoom 
연사 Dr.Heeyeon Kim (Rutgers University, Department of Physics and Astronomy) 
김희연 박사의 세미나를 아래와 같이 안내드립니다.
 

Title: Geometry, Algebra, and Quantum Field Theory 

Speaker: Dr.Heeyeon Kim  (Rutgers University, Department of Physics and Astronomy )
Date: May. 18(Wed), 4pm

Place : E6-2. 1st fl. #1323

[Zoom 회의 참가]
 
회의 ID: 870 9940 6103

 

Abstract: 

Quantum Field Theory (QFT) is a powerful description of a wide range of physical phenomena, from the interaction of elementary particles to exotic phases of matter. However, despite its remarkable success, the traditional framework of QFT based on perturbation theory remains incomplete. One of the most important challenges is to build a mathematical foundation of QFT that enables a systematic study of strongly interacting systems.
 
In this talk, I will introduce String Theory as a unique tool that connects various ideas in quantum physics and modern mathematics. Regardless of its phenomenological role, this framework provides novel insights into both disciplines. Dualities in string theory predict extremely non-trivial conjectures identifying two a priori distinct structures in mathematics. Conversely, ideas in modern mathematics have led to new advances in QFT that allows a deeper understanding of its non-perturbative structures.
 
I will discuss recent development in building a unifying tool that plays a central role in establishing this connection. In particular, I will focus on the interplay between supersymmetric QFTs and problems in enumerative geometry, which is a branch in modern mathematics that counts the number of solutions to fundamental geometric questions. The interaction leads to a variety of new applications across physics and mathematics, from black-hole micro-state counting problems to the classification of topological spaces.
번호 날짜 장소 제목
276 2016-06-16 16:00  #1323(E6-2, 1st fl.)  Quantum information processing using quantum dots and photonic crystal cavities
275 2020-12-11 16:00  online  Atomic and electronic reconstruction at van der Waals interface in twisted 2D materials
274 2024-02-16 10:00  E6, #1323  Optical conductivity of superconducting states driven by Van Hove singularities
273 2019-08-01 14:00  E6 Room(#1323)  Low-density Superconductivity in SrTiO3 Probed by Planar Tunneling Spectroscopy file
272 2024-09-26 14:00  KAIST, Physics Bldg. (E6-2) / (Rm. 3441)  Quantum spin nematic phase in a square-lattice iridate
271 2019-08-27 16:00  Rm. 1323, E6  Critical current properties of Fe-based superconductors file
270 2020-01-17 16:00  #1323, E6-2  Symmetry Breaking and Topology in Superfluid 3He file
269 2024-08-16 11:00  E6 1322 (no zoom broadcasting)  Cathodoluminescence for nanophotonics: Applications to plasmonic bandgap materials and perovskite semiconductors file
268 2023-11-30 10:30  E6-2, #1322  [High-Energy Theory Seminar] 3d-3d correspondence and 2d N = (0,2) boundary conditions
267 2019-09-26 16:00  #1323, E6-2  Entanglement Swapping with Autonomous Polarization-Entangled Photon-Pairs from Warm Atomic Ensemble file
266 2019-12-27 15:00  #5318, E6-2  The superconducting order parameter puzzle of Sr2RuO4 file
265 2019-12-27 15:00  E6-2,#5318  The superconducting order parameter puzzle of Sr2RuO4 file
264 2024-01-16 16:00  E6-2, #2502  [High Energy Theory Seminar] Towards quantum black hole microstates
263 2022-05-12 16:00  E6-2. #1323 & Zoom  New frontiers of electroweak physics at the LHC
262 2022-05-19 16:00  E6-2. #1323 & Zoom  Chasing Long Standing Neutrino Anomalies with MicroBooNE
» 2022-05-18 16:00  E6-2. #1323 & Zoom  Geometry, Algebra, and Quantum Field Theory
260 2022-09-15 13:00  E6-2, #1323  AdS black holes: a review
259 2016-11-18 10:30  #5318(5th fl.)  Non-equilibrium many-body spin dynamics in diamond
258 2016-10-27 16:00  #1323(E6-2)  Terahertz Metal Optics
257 2019-06-28 13:30  #1323, E6-2  Magnetic domains and domain wall conduction in pyrochlore iridate thin films and heterostructures file